Open-Catalyst-Dataset 开源项目最佳实践
2025-05-21 09:19:21作者:丁柯新Fawn
1. 项目介绍
Open-Catalyst-Dataset 是由 Open-Catalyst-Project 开发的一个开源项目,旨在为催化研究提供一套高质量的吸附剂-催化剂输入生成工作流程。该数据集通过自动化的方式生成吸附剂和催化剂的配置,支持多种吸附剂和催化剂的组合,为催化反应的研究提供了丰富的实验数据。
2. 项目快速启动
环境搭建
首先,确保安装了 Conda 环境。如果没有安装,可以通过以下命令安装:
conda install -n ocp python=3.9
conda activate ocp
接着,安装所需的 Python 包:
pip install pymatgen==2023.5.10 ase==3.22.1
克隆项目
将项目克隆到本地:
git clone https://github.com/Open-Catalyst-Project/Open-Catalyst-Dataset.git
cd Open-Catalyst-Dataset
安装项目:
pip install -e .
示例使用
以下是一个简单的示例,展示如何使用 Open-Catalyst-Dataset 工作流程将 CO 放置在 Cu (1,1,1) 表面上:
bulk_src_id = "mp-30"
adsorbate_smiles = "*CO"
bulk = Bulk(bulk_src_id_from_db=bulk_src_id, bulk_db_path="your-path-here.pkl")
adsorbate = Adsorbate(adsorbate_smiles_from_db=adsorbate_smiles, adsorbate_db_path="your-path-here.pkl")
slabs = Slab.from_bulk_get_specific_millers(bulk=bulk, specific_millers=(1, 1, 1))
# 执行启发式放置
heuristic_adslabs = AdsorbateSlabConfig(slabs[0], adsorbate, mode="heuristic")
# 执行随机位点,启发式放置
random_adslabs = AdsorbateSlabConfig(slabs[0], adsorbate, mode="random_site_heuristic_placement", num_sites=100)
请确保将 your-path-here.pkl 替换为实际的数据库文件路径。
3. 应用案例和最佳实践
生成吸附剂-催化剂配置
使用 Open-Catalyst-Dataset 生成吸附剂-催化剂配置时,可以采用不同的模式来放置吸附剂,包括启发式放置、随机放置和随机位点启发式放置。
- 启发式放置:在表面原子节点、两节点之间和三角形中心考虑放置位点。
- 随机放置:在 Delaunay 三角形的边上均匀随机采样放置位点。
- 随机位点启发式放置:结合启发式和随机放置的优点。
以下是一个使用启发式放置的示例:
heuristic_adslabs = AdsorbateSlabConfig(slabs[0], adsorbate, mode="heuristic")
生成 VASP 输入文件
Open-Catalyst-Dataset 提供了一个 StructureGenerator 辅助类,用于创建吸附剂、催化剂对象,并生成 VASP 输入文件和元数据。
# 示例:生成 VASP 输入文件
structure_generator = StructureGenerator(bulk_db_path="your-path-here.pkl", adsorbate_db_path="your-path-here.pkl")
structure_generator.generate_input_files(output_dir="output", bulk_index=0, adsorbate_index=0, surface_index=0)
请确保将 your-path-here.pkl 替换为实际的数据库文件路径。
4. 典型生态项目
Open-Catalyst-Dataset 可以作为催化研究的一个基础工具,与其他开源项目如 Open Catalyst、Pythia 等 结合使用,共同构建一个完整的催化研究生态。例如,可以使用 Open-Catalyst-Dataset 生成的数据集来训练机器学习模型,预测催化反应的活性。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0100
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
287
340
暂无简介
Dart
728
175
Ascend Extension for PyTorch
Python
288
321
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
447
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
239
100
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
451
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
705