Open-Catalyst-Dataset 开源项目最佳实践
2025-05-21 04:28:37作者:丁柯新Fawn
1. 项目介绍
Open-Catalyst-Dataset 是由 Open-Catalyst-Project 开发的一个开源项目,旨在为催化研究提供一套高质量的吸附剂-催化剂输入生成工作流程。该数据集通过自动化的方式生成吸附剂和催化剂的配置,支持多种吸附剂和催化剂的组合,为催化反应的研究提供了丰富的实验数据。
2. 项目快速启动
环境搭建
首先,确保安装了 Conda 环境。如果没有安装,可以通过以下命令安装:
conda install -n ocp python=3.9
conda activate ocp
接着,安装所需的 Python 包:
pip install pymatgen==2023.5.10 ase==3.22.1
克隆项目
将项目克隆到本地:
git clone https://github.com/Open-Catalyst-Project/Open-Catalyst-Dataset.git
cd Open-Catalyst-Dataset
安装项目:
pip install -e .
示例使用
以下是一个简单的示例,展示如何使用 Open-Catalyst-Dataset 工作流程将 CO 放置在 Cu (1,1,1) 表面上:
bulk_src_id = "mp-30"
adsorbate_smiles = "*CO"
bulk = Bulk(bulk_src_id_from_db=bulk_src_id, bulk_db_path="your-path-here.pkl")
adsorbate = Adsorbate(adsorbate_smiles_from_db=adsorbate_smiles, adsorbate_db_path="your-path-here.pkl")
slabs = Slab.from_bulk_get_specific_millers(bulk=bulk, specific_millers=(1, 1, 1))
# 执行启发式放置
heuristic_adslabs = AdsorbateSlabConfig(slabs[0], adsorbate, mode="heuristic")
# 执行随机位点,启发式放置
random_adslabs = AdsorbateSlabConfig(slabs[0], adsorbate, mode="random_site_heuristic_placement", num_sites=100)
请确保将 your-path-here.pkl 替换为实际的数据库文件路径。
3. 应用案例和最佳实践
生成吸附剂-催化剂配置
使用 Open-Catalyst-Dataset 生成吸附剂-催化剂配置时,可以采用不同的模式来放置吸附剂,包括启发式放置、随机放置和随机位点启发式放置。
- 启发式放置:在表面原子节点、两节点之间和三角形中心考虑放置位点。
- 随机放置:在 Delaunay 三角形的边上均匀随机采样放置位点。
- 随机位点启发式放置:结合启发式和随机放置的优点。
以下是一个使用启发式放置的示例:
heuristic_adslabs = AdsorbateSlabConfig(slabs[0], adsorbate, mode="heuristic")
生成 VASP 输入文件
Open-Catalyst-Dataset 提供了一个 StructureGenerator 辅助类,用于创建吸附剂、催化剂对象,并生成 VASP 输入文件和元数据。
# 示例:生成 VASP 输入文件
structure_generator = StructureGenerator(bulk_db_path="your-path-here.pkl", adsorbate_db_path="your-path-here.pkl")
structure_generator.generate_input_files(output_dir="output", bulk_index=0, adsorbate_index=0, surface_index=0)
请确保将 your-path-here.pkl 替换为实际的数据库文件路径。
4. 典型生态项目
Open-Catalyst-Dataset 可以作为催化研究的一个基础工具,与其他开源项目如 Open Catalyst、Pythia 等 结合使用,共同构建一个完整的催化研究生态。例如,可以使用 Open-Catalyst-Dataset 生成的数据集来训练机器学习模型,预测催化反应的活性。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178