Yosys优化过程中DFF常量输入未被替换的问题分析
2025-06-18 06:31:35作者:段琳惟
问题背景
在使用Yosys 0.34+43版本对基于sky130工艺的RV32I CPU核心进行综合时,发现一个关于时序逻辑优化的特殊现象。设计中有三个DFF(D触发器)的输入端口被固定为1'h0,理论上这些DFF可以被优化为常量驱动,但在实际综合流程中它们被保留了下来。
问题现象分析
在标准综合流程中,Yosys通常能够识别并优化具有常量输入的时序元件。具体到本案例:
- 设计中有三个sky130_fd_sc_hd__dfxtp_1类型的DFF,其输入被固定为逻辑0
- ABC优化阶段确实产生了三个_const0_单元,表明优化器识别到了这些常量条件
- 但最终的网表中这些DFF仍然保留,未被替换为常量驱动
技术原理探究
经过深入分析,发现问题根源在于Yosys优化流程的顺序问题:
-
DFF映射时机不当:在调用dfflibmap将内部DFF映射到工艺库单元后,后续的opt_dff优化步骤无法识别这些工艺特定的DFF单元类型,导致优化机会被错过
-
ABC优化特性:ABC工具虽然能进行常量传播,但它主要关注组合逻辑优化,对时序元件的优化能力有限
解决方案
通过调整优化流程顺序,可以解决这个问题:
- 先进行ABC优化:在映射到工艺DFF之前,先使用ABC对内部通用DFF进行优化
- 后执行DFF映射:在组合逻辑优化完成后再将DFF映射到工艺库单元
- 增加优化步骤:在关键节点插入额外的优化命令确保充分优化
优化后的脚本关键部分如下:
# 初始读取和层次化处理
read_liberty -lib sky130_fd_sc_hd__tt_025C_1v80.lib
read_verilog riscv_pipelined_Final.v
hierarchy -check -top riscv_core
# 综合和初步优化
synth -top riscv_core -flatten
opt
stat
# 在映射前进行ABC优化
abc
opt
opt_clean -purge
stat
# 最后进行DFF工艺映射
dfflibmap -liberty sky130_fd_sc_hd__tt_025C_1v80.lib
# 最终优化和输出
abc -liberty sky130_fd_sc_hd__tt_025C_1v80.lib -script +strash;scorr;ifraig;retime,{D};strash;dch,-f;map,-M,1,{D}
setundef -undriven -init -zero
opt
opt_clean -purge
rename -enumerate
stat
write_verilog -noattr riscv_pipelined_Final_netlist.v
相关技巧:防止特定代码被优化
在硬件设计中,有时需要保留特定的结构不被优化。Yosys提供了(* keep *)属性来实现这一目的:
(* keep *)
wire [31:0] instrs [0:12-1];
assign instrs[0] = {7'b0000000, 5'd0, 5'd0, 3'b000, 5'd10, 7'b0110011};
// 其他赋值语句...
需要注意:
keep属性作用于特定的信号声明,而非代码块- 它保证信号本身不被优化掉,但输入逻辑仍可能被优化
- 对于需要完全保留的电路结构,需要对所有相关信号添加该属性
总结
本文分析了Yosys在优化具有常量输入的DFF时遇到的问题,并提供了解决方案。关键在于理解工具优化流程的顺序敏感性,以及如何通过调整命令顺序来获得最佳优化效果。同时介绍了使用keep属性保护特定设计结构的方法,为复杂数字电路的综合提供了实用技巧。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Jetson TX2开发板官方资源完全指南:从入门到精通 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
191
210
暂无简介
Dart
632
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
211