Opinionated:为你的数据可视化增添一抹优雅
2024-10-10 06:09:52作者:江焘钦
在数据科学的世界里,数据可视化不仅仅是展示数据的工具,更是讲述故事的艺术。为了让你的图表更具吸引力和专业性,我们推荐一款名为Opinionated的开源项目。它为matplotlib和seaborn提供了简洁、优雅的样式表,让你的图表瞬间提升一个档次。
项目介绍
Opinionated是一款专为matplotlib和seaborn设计的样式表库。它的灵感来源于R语言中的hrbrthemes,旨在提供一种以排版为中心、具有强烈个人风格的图表样式。虽然Opinionated并非hrbrthemes的精确克隆,但它继承了其简洁、优雅的设计理念,并结合了Python社区的优秀实践。
项目技术分析
Opinionated的核心功能是通过预定义的样式表来美化matplotlib和seaborn的图表。它不仅提供了多种字体选择,还自动从Google Fonts下载字体,确保在Google Colab等环境中也能正常使用。此外,Opinionated还集成了colormaps库,为用户提供了丰富的颜色映射选择。
项目及技术应用场景
Opinionated适用于各种需要高质量数据可视化的场景,尤其是在以下情况下:
- 学术研究:在论文或报告中展示数据时,使用
Opinionated可以让你的图表更具专业性和美观性。 - 数据分析:在数据分析过程中,使用
Opinionated可以快速生成美观的图表,提升分析报告的可读性。 - 教育培训:在教学或培训中,使用
Opinionated可以让学生更容易理解数据,提升教学效果。
项目特点
- 简洁易用:只需几行代码,即可应用
Opinionated的样式表,无需复杂的配置。 - 丰富的字体选择:内置多种字体样式,满足不同场景的需求。
- 自动字体下载:自动从Google Fonts下载字体,确保在各种环境中都能正常使用。
- 集成
colormaps库:提供了丰富的颜色映射选择,让你的图表更加丰富多彩。 - 灵活定制:支持用户自定义字体和样式,满足个性化需求。
使用示例
以下是一个简单的使用示例,展示了如何使用Opinionated来美化你的图表:
import opinionated
import matplotlib.pyplot as plt
plt.style.use("opinionated_rc")
import colormaps as cmaps
f, ax = plt.subplots(figsize=(10, 7))
sns.scatterplot(x="bill_length_mm", y="flipper_length_mm", hue="species", data=penguins, alpha=.7, s= 70, palette=cmaps.bold[2:5]._colors)
opinionated.add_legend(title='Species')
opinionated.add_attribution('by Maximilian Noichl')
opinionated.set_title_and_suptitle('Penguins!','They are an excellent type of bird!')
plt.show()
通过上述代码,你可以轻松生成一个美观的散点图,让你的数据可视化更具吸引力。
结语
Opinionated是一款简单而强大的工具,它能让你的数据可视化工作变得更加轻松和愉快。无论你是数据科学家、研究人员还是教育工作者,Opinionated都能为你的图表增添一抹优雅,让你的数据故事更加生动。赶快尝试一下吧!
项目地址: Opinionated GitHub
引用信息:
APA:
Noichl, M. (2023). Opinionated: Simple, Clean Stylesheets for Plotting with Matplotlib and Seaborn (Version 0.0.2.8) [Computer software]. https://doi.org/10.5281/zenodo.8329780
BibTeX:
@software{Noichl_Opinionated_Simple_Clean_2023,
author = {Noichl, Maximilian},
doi = {10.5281/zenodo.8329780},
month = aug,
title = {{Opinionated: Simple, Clean Stylesheets for Plotting with Matplotlib and Seaborn}},
url = {https://github.com/MNoichl/opinionated},
version = {0.0.2.8},
year = {2023}
}
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355