Opinionated:为你的数据可视化增添一抹优雅
2024-10-10 11:30:35作者:江焘钦
在数据科学的世界里,数据可视化不仅仅是展示数据的工具,更是讲述故事的艺术。为了让你的图表更具吸引力和专业性,我们推荐一款名为Opinionated的开源项目。它为matplotlib和seaborn提供了简洁、优雅的样式表,让你的图表瞬间提升一个档次。
项目介绍
Opinionated是一款专为matplotlib和seaborn设计的样式表库。它的灵感来源于R语言中的hrbrthemes,旨在提供一种以排版为中心、具有强烈个人风格的图表样式。虽然Opinionated并非hrbrthemes的精确克隆,但它继承了其简洁、优雅的设计理念,并结合了Python社区的优秀实践。
项目技术分析
Opinionated的核心功能是通过预定义的样式表来美化matplotlib和seaborn的图表。它不仅提供了多种字体选择,还自动从Google Fonts下载字体,确保在Google Colab等环境中也能正常使用。此外,Opinionated还集成了colormaps库,为用户提供了丰富的颜色映射选择。
项目及技术应用场景
Opinionated适用于各种需要高质量数据可视化的场景,尤其是在以下情况下:
- 学术研究:在论文或报告中展示数据时,使用
Opinionated可以让你的图表更具专业性和美观性。 - 数据分析:在数据分析过程中,使用
Opinionated可以快速生成美观的图表,提升分析报告的可读性。 - 教育培训:在教学或培训中,使用
Opinionated可以让学生更容易理解数据,提升教学效果。
项目特点
- 简洁易用:只需几行代码,即可应用
Opinionated的样式表,无需复杂的配置。 - 丰富的字体选择:内置多种字体样式,满足不同场景的需求。
- 自动字体下载:自动从Google Fonts下载字体,确保在各种环境中都能正常使用。
- 集成
colormaps库:提供了丰富的颜色映射选择,让你的图表更加丰富多彩。 - 灵活定制:支持用户自定义字体和样式,满足个性化需求。
使用示例
以下是一个简单的使用示例,展示了如何使用Opinionated来美化你的图表:
import opinionated
import matplotlib.pyplot as plt
plt.style.use("opinionated_rc")
import colormaps as cmaps
f, ax = plt.subplots(figsize=(10, 7))
sns.scatterplot(x="bill_length_mm", y="flipper_length_mm", hue="species", data=penguins, alpha=.7, s= 70, palette=cmaps.bold[2:5]._colors)
opinionated.add_legend(title='Species')
opinionated.add_attribution('by Maximilian Noichl')
opinionated.set_title_and_suptitle('Penguins!','They are an excellent type of bird!')
plt.show()
通过上述代码,你可以轻松生成一个美观的散点图,让你的数据可视化更具吸引力。
结语
Opinionated是一款简单而强大的工具,它能让你的数据可视化工作变得更加轻松和愉快。无论你是数据科学家、研究人员还是教育工作者,Opinionated都能为你的图表增添一抹优雅,让你的数据故事更加生动。赶快尝试一下吧!
项目地址: Opinionated GitHub
引用信息:
APA:
Noichl, M. (2023). Opinionated: Simple, Clean Stylesheets for Plotting with Matplotlib and Seaborn (Version 0.0.2.8) [Computer software]. https://doi.org/10.5281/zenodo.8329780
BibTeX:
@software{Noichl_Opinionated_Simple_Clean_2023,
author = {Noichl, Maximilian},
doi = {10.5281/zenodo.8329780},
month = aug,
title = {{Opinionated: Simple, Clean Stylesheets for Plotting with Matplotlib and Seaborn}},
url = {https://github.com/MNoichl/opinionated},
version = {0.0.2.8},
year = {2023}
}
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
Kimi-K2-ThinkingKimi-K2-Thinking是最新开源思维模型,作为能动态调用工具的推理代理,通过深度多步推理和稳定工具调用(200-300次连续调用),在HLE、BrowseComp等基准测试中刷新纪录。原生INT4量化模型,256k上下文窗口,实现推理延迟和GPU内存使用的无损降低,支持自主研究、编码和写作等工作流。【此简介由AI生成】Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Visual Studio 2015企业版中文版下载安装完全指南 - 专业开发工具必备资源 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 开源电子设计自动化利器:KiCad EDA全方位使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CVE-2024-38077伪代码修复版EXP资源详解:Windows远程桌面授权服务问题利用指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
297
2.64 K
Ascend Extension for PyTorch
Python
128
152
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
608
191
React Native鸿蒙化仓库
JavaScript
228
307
暂无简介
Dart
591
128
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
612
仓颉编译器源码及 cjdb 调试工具。
C++
122
496
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
47
77
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
179
64
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
456