LitGPT 模型继续预训练的技术实践指南
2025-05-19 11:56:05作者:段琳惟
在大型语言模型的训练过程中,我们经常需要中断训练后继续训练,或者基于已有模型在新数据集上进行继续预训练。本文将详细介绍如何使用LitGPT项目实现这些需求,并分析其中的技术要点。
模型继续训练的基本流程
1. 初始训练准备
首先需要准备训练数据和下载分词器。以Pythia-160m模型为例:
# 创建数据目录并下载示例文本
mkdir -p custom_texts
curl https://www.gutenberg.org/cache/epub/24440/pg24440.txt --output custom_texts/book1.txt
curl https://www.gutenberg.org/cache/epub/26393/pg26393.txt --output custom_texts/book2.txt
# 下载分词器
litgpt download EleutherAI/pythia-160m --tokenizer_only True
2. 初始模型训练
使用准备好的数据进行初始训练:
litgpt pretrain EleutherAI/pythia-160m \
--tokenizer_dir EleutherAI/pythia-160m \
--data TextFiles \
--data.train_data_path "custom_texts/" \
--train.max_tokens 1_000_000 \
--out_dir out/custom-model
中断后继续训练
当训练过程被中断需要继续时,可以使用--resume参数:
litgpt pretrain pythia-160m \
--resume "auto" \
--tokenizer_dir EleutherAI/pythia-160m \
--out_dir out/custom-model-2 \
--data TextFiles \
--data.train_data_path "custom_texts/"
技术要点:
--resume "auto"会自动加载最新的检查点- 必须保持输出目录不变
- 会继承之前的训练状态(如迭代次数等)
在新数据集上继续预训练
当需要在完全不同的数据集上继续预训练时,需要额外的模型转换步骤:
1. 模型转换
litgpt convert_pretrained_checkpoint out/custom-model/final/ out/custom-model-converted
这个步骤会将训练检查点转换为标准格式,移除训练状态信息。
2. 准备新数据
cp -r custom_texts/ custom_new_texts/
3. 开始新训练
litgpt pretrain pythia-160m \
--initial_checkpoint_dir out/custom-model-converted \
--tokenizer_dir EleutherAI/pythia-160m \
--out_dir new_checkpoint \
--data TextFiles \
--data.train_data_path "custom_new_texts/"
常见问题与解决方案
-
状态字典加载错误:
- 症状:报错提示缺少某些权重或存在意外键
- 原因:直接使用了包含训练状态的检查点
- 解决:必须使用
convert_pretrained_checkpoint转换检查点
-
数据加载器冲突:
- 当使用
--resume时,会加载之前的数据加载器状态 - 对于新数据集,必须使用转换后的检查点而非直接恢复
- 当使用
-
输出目录问题:
- 使用
--resume时必须保持输出目录不变 - 如需更改目录,需手动指定检查点文件路径
- 使用
最佳实践建议
-
训练中断恢复:
- 使用
--resume "auto"最简单可靠 - 保持原始输出目录结构
- 使用
-
跨数据集训练:
- 必须进行模型转换
- 建议保留原始检查点备份
-
实验管理:
- 为不同数据集训练创建独立目录
- 记录每个实验的检查点来源
通过以上方法,可以灵活地在LitGPT框架下实现模型的继续训练和跨数据集预训练,满足不同场景下的模型开发需求。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355