Apache KvRocks 存储引擎中 L0-L1 层压缩优化方案探讨
2025-06-29 22:24:17作者:毕习沙Eudora
背景与问题分析
在基于 RocksDB 的存储引擎 Apache KvRocks 中,数据压缩策略对系统性能有着重要影响。当前实现中,L0 和 L1 这两个最上层的数据层级默认不进行数据压缩,这一设计主要基于以下考虑:
- 热点数据访问:L0-L1 层级通常包含最频繁访问的数据,不压缩可以减少解压缩带来的 CPU 开销
- 写入性能优化:避免压缩操作可以降低写入延迟
然而,在某些特定场景下,这种默认策略可能并非最优选择。特别是当业务数据具有以下特征时:
- 数据压缩率较高(如达到 8-10 倍压缩比)
- 系统写入吞吐量非常大
- L0-L1 层级的数据频繁参与 compaction 操作
在这种情况下,L0-L1 层不压缩会导致:
- 存储空间放大
- 增加 I/O 压力
- 提升 compaction 操作的读写负载
技术方案设计
针对这一问题,社区提出了可配置化的压缩策略方案。核心思路是为 L0-L1 层级引入可调节的压缩配置能力,允许用户根据实际业务特征进行优化。
配置参数设计
经过讨论,最终确定采用以下配置参数:
rocksdb.nocompression_for_first_levels
该参数采用整数值,表示前 N 个层级不进行压缩。例如:
- 设置为 2(默认值):保持现有行为,L0-L1 不压缩
- 设置为 1:仅 L0 不压缩
- 设置为 0:所有层级都启用压缩
实现原理
在技术实现上,该功能通过修改 RocksDB 的 compression_per_level 选项来实现。具体逻辑为:
- 解析用户配置的
nocompression_for_first_levels值 - 构建压缩级别字符串,前 N 个层级设置为
kNoCompression - 后续层级使用用户配置的压缩算法(如 LZ4、ZSTD 等)
- 将该配置应用到所有列族(Column Family)
应用场景建议
根据不同的业务特征,建议采用以下配置策略:
- 常规 OLTP 场景:保持默认值 2,优先保证读写性能
- 高压缩比数据场景:可设置为 1 或 0,利用压缩减少 I/O 和存储开销
- 冷热数据分离场景:结合其他优化手段,如 TTL 或手动 compact,灵活调整压缩策略
性能考量
启用 L0-L1 压缩时需要注意:
- CPU 开销增加:压缩/解压缩操作会消耗额外 CPU 资源
- 写入放大效应:压缩可能增加写入延迟
- 读取性能影响:热点数据需要解压缩,可能增加读取延迟
建议在实际生产环境中进行充分的基准测试,找到最适合业务特征的配置值。
总结
Apache KvRocks 通过引入可配置的 L0-L1 压缩策略,为用户提供了更灵活的存储优化手段。这项改进特别适合数据压缩率高、写入吞吐量大的业务场景,能够有效平衡存储空间、I/O 开销和 CPU 利用率之间的关系。用户可以根据自身业务特征,通过简单的配置调整获得最佳的性能表现。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355