Apache KvRocks 存储引擎中 L0-L1 层压缩优化方案探讨
2025-06-29 22:57:35作者:毕习沙Eudora
背景与问题分析
在基于 RocksDB 的存储引擎 Apache KvRocks 中,数据压缩策略对系统性能有着重要影响。当前实现中,L0 和 L1 这两个最上层的数据层级默认不进行数据压缩,这一设计主要基于以下考虑:
- 热点数据访问:L0-L1 层级通常包含最频繁访问的数据,不压缩可以减少解压缩带来的 CPU 开销
- 写入性能优化:避免压缩操作可以降低写入延迟
然而,在某些特定场景下,这种默认策略可能并非最优选择。特别是当业务数据具有以下特征时:
- 数据压缩率较高(如达到 8-10 倍压缩比)
- 系统写入吞吐量非常大
- L0-L1 层级的数据频繁参与 compaction 操作
在这种情况下,L0-L1 层不压缩会导致:
- 存储空间放大
- 增加 I/O 压力
- 提升 compaction 操作的读写负载
技术方案设计
针对这一问题,社区提出了可配置化的压缩策略方案。核心思路是为 L0-L1 层级引入可调节的压缩配置能力,允许用户根据实际业务特征进行优化。
配置参数设计
经过讨论,最终确定采用以下配置参数:
rocksdb.nocompression_for_first_levels
该参数采用整数值,表示前 N 个层级不进行压缩。例如:
- 设置为 2(默认值):保持现有行为,L0-L1 不压缩
- 设置为 1:仅 L0 不压缩
- 设置为 0:所有层级都启用压缩
实现原理
在技术实现上,该功能通过修改 RocksDB 的 compression_per_level 选项来实现。具体逻辑为:
- 解析用户配置的
nocompression_for_first_levels值 - 构建压缩级别字符串,前 N 个层级设置为
kNoCompression - 后续层级使用用户配置的压缩算法(如 LZ4、ZSTD 等)
- 将该配置应用到所有列族(Column Family)
应用场景建议
根据不同的业务特征,建议采用以下配置策略:
- 常规 OLTP 场景:保持默认值 2,优先保证读写性能
- 高压缩比数据场景:可设置为 1 或 0,利用压缩减少 I/O 和存储开销
- 冷热数据分离场景:结合其他优化手段,如 TTL 或手动 compact,灵活调整压缩策略
性能考量
启用 L0-L1 压缩时需要注意:
- CPU 开销增加:压缩/解压缩操作会消耗额外 CPU 资源
- 写入放大效应:压缩可能增加写入延迟
- 读取性能影响:热点数据需要解压缩,可能增加读取延迟
建议在实际生产环境中进行充分的基准测试,找到最适合业务特征的配置值。
总结
Apache KvRocks 通过引入可配置的 L0-L1 压缩策略,为用户提供了更灵活的存储优化手段。这项改进特别适合数据压缩率高、写入吞吐量大的业务场景,能够有效平衡存储空间、I/O 开销和 CPU 利用率之间的关系。用户可以根据自身业务特征,通过简单的配置调整获得最佳的性能表现。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
214
234
暂无简介
Dart
661
151
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
659
294
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.18 K
646
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
491
React Native鸿蒙化仓库
JavaScript
251
320
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
80
104
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
217
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1