在Vedo中控制极坐标直方图的方向
2025-07-04 11:38:54作者:谭伦延
概述
在数据可视化中,极坐标直方图是一种展示角度分布数据的有效工具。Vedo作为一款强大的Python可视化库,提供了创建极坐标直方图的功能。本文将详细介绍如何在Vedo中创建极坐标直方图并控制其方向。
极坐标直方图基础
Vedo的histogram函数支持mode='polar'参数来创建极坐标直方图。基本用法如下:
from vedo.pyplot import histogram
import numpy as np
radhisto = histogram(
np.random.rand(200)*6.28,
mode='polar',
title="随机方向",
bins=10,
c=range(10),
alpha=0.8,
labels=["标签"+str(i) for i in range(10)],
)
这段代码会创建一个包含10个扇形区域的极坐标直方图,每个区域代表一个角度区间,高度表示该区间内数据的频数。
控制极坐标直方图方向
默认情况下,极坐标直方图的法向量指向Z轴正方向(0,0,1)。要改变其方向,我们需要使用向量对齐技术。核心思路是计算一个旋转矩阵,将默认法向量旋转到我们期望的方向。
向量对齐算法
实现向量对齐的关键是Rodriguez旋转公式。该算法步骤如下:
- 归一化输入向量
- 处理平行或反平行特殊情况
- 计算旋转轴(两向量的叉积)
- 计算旋转角度(两向量的点积)
- 构造旋转矩阵
以下是实现代码:
def align_vectors(a, b):
a = np.array(a, dtype=float)
b = np.array(b, dtype=float)
a = a / np.linalg.norm(a)
b = b / np.linalg.norm(b)
dot = np.dot(a, b)
if np.allclose(dot, 1.0): # 向量平行
return np.eye(3)
if np.allclose(dot, -1.0): # 向量反平行
v = np.array([1, 0, 0])
if np.abs(np.dot(v, a)) > 0.9:
v = np.array([0, 1, 0])
v = v - (np.dot(v, a) / np.dot(a, a)) * a
v = v / np.linalg.norm(v)
sin_theta = 0.0
cos_theta = -1.0
else:
v = np.cross(a, b)
v = v / np.linalg.norm(v)
cos_theta = np.dot(a, b)
sin_theta = np.linalg.norm(np.cross(a, b))
K = np.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]])
R = np.eye(3) + sin_theta * K + (1 - cos_theta) * K @ K
return R
应用旋转矩阵
获得旋转矩阵后,我们可以将其应用到极坐标直方图上:
R = align_vectors([0, 0, 1], [1, 1, 1]) # 将Z轴旋转到(1,1,1)方向
radhisto.apply_transform(R)
完整示例
结合上述内容,完整的极坐标直方图方向控制示例如下:
from vedo import *
from vedo.pyplot import histogram
import numpy as np
def align_vectors(a, b):
# 向量对齐实现代码(同上)
...
radhisto = histogram(
np.random.rand(200) * 6.28,
mode="polar",
title="随机方向",
bins=10,
c=range(10),
labels=["标签" + str(i) for i in range(10)],
)
# 将直方图法向量从(0,0,1)旋转到(1,1,1)
R = align_vectors([0, 0, 1], [1, 1, 1])
radhisto.apply_transform(R)
show(radhisto, axes=1)
应用场景
这种方向控制技术在以下场景中特别有用:
- 三维数据可视化中需要将极坐标直方图与其他几何体对齐
- 展示特定方向上的角度分布
- 创建复杂的多视图可视化布局
总结
通过Vedo库和向量对齐技术,我们可以灵活控制极坐标直方图的方向。这种方法不仅适用于极坐标直方图,也可推广到其他需要方向控制的可视化元素中。掌握这一技术可以大大增强三维数据可视化的表达能力。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Jetson TX2开发板官方资源完全指南:从入门到精通 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.69 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
632
143