Spring AI项目中ChatMemory参数保存问题的分析与解决
在Spring AI项目的开发过程中,开发者可能会遇到ChatMemory无法正确保存PromptUserSpec参数的问题。这个问题主要出现在使用ChatClient构建聊天请求时,当通过PromptUserSpec设置模板和参数后,历史记录中只保存了未渲染的模板字符串,而没有保存实际替换后的内容。
问题现象
当开发者使用如下代码构建聊天请求时:
private ChatClient.ChatClientRequestSpec buildChatClientRequestSpecRAGAdvisor(Question question, String conversationId) {
return chatClient.prompt()
.user(userSpec -> userSpec
.text("{question} (error: '{error}')?")
.param("question", question.question())
.param("error", question.error()!=null?question.error():""))
.advisors( advisorSpec -> advisorSpec.param(AbstractChatMemoryAdvisor.CHAT_MEMORY_CONVERSATION_ID_KEY, conversationId));
}
期望在ChatMemory中保存的是已经替换了参数的完整消息,例如:"What is AI? (error: 'None')",但实际保存的却是未渲染的模板字符串:"{question} (error: '{error}')"。
问题根源
这个问题源于Spring AI框架中PromptChatMemoryAdvisor的实现逻辑。在1.0.0-M8版本之前,PromptChatMemoryAdvisor在处理用户消息时,直接将未渲染的模板字符串添加到了ChatMemoryStore中,而没有先执行参数替换操作。
具体来说,问题出在PromptChatMemoryAdvisor的before方法中:
this.getChatMemoryStore().add(this.doGetConversationId(request.adviseContext()), userMessage);
这里直接将原始的userMessage(包含模板字符串)添加到了内存存储中,而没有先进行参数替换。
解决方案
Spring AI团队在1.0.0-M8版本中修复了这个问题。修复的核心思路是让ChatClient在执行advisor链之前先渲染输入提示。这意味着:
- 在请求处理流程中,ChatClient会先处理PromptUserSpec中的参数替换
- 将渲染后的完整消息传递给后续的advisor处理
- PromptChatMemoryAdvisor现在接收到的是已经替换了参数的消息内容
这个改变确保了ChatMemory中保存的是用户实际发送的消息内容,而不是模板字符串。
升级建议
对于遇到此问题的开发者,建议升级到Spring AI 1.0.0-M8或更高版本。升级后,ChatMemory将能够正确保存渲染后的消息内容。
如果由于某些原因无法立即升级,开发者也可以考虑以下临时解决方案:
- 手动渲染消息内容后再传递给ChatClient
- 实现自定义的ChatMemoryAdvisor,在保存消息前执行参数替换
总结
Spring AI框架在不断演进中解决了许多实际开发中遇到的问题。这个ChatMemory参数保存问题的解决,体现了框架对开发者体验的重视。通过理解问题的根源和解决方案,开发者可以更好地利用Spring AI构建强大的聊天应用,同时也能在遇到类似问题时更快地找到解决方法。
对于使用Spring AI的开发团队,建议保持框架版本的及时更新,并关注官方文档中的升级说明,以确保能够获得最新的功能改进和问题修复。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00