FluentValidation在Blazor模块中的属性名本地化实践
概述
在基于ABP框架的Blazor应用开发中,表单验证是一个常见需求。FluentValidation作为一款强大的.NET验证库,提供了灵活的验证规则定义方式。本文将介绍如何在Blazor模块中实现FluentValidation属性名的全局本地化配置,使验证错误消息能够自动适配多语言环境。
本地化需求背景
在开发多语言应用时,验证错误消息中的属性名称需要根据用户语言环境动态显示。例如,当验证失败时,"Name"字段的错误提示应该显示为当前语言环境下的对应翻译(如中文显示"名称")。
解决方案
全局属性名解析器配置
FluentValidation提供了ValidatorOptions.Global.DisplayNameResolver静态属性,允许开发者自定义全局的属性名解析逻辑。我们可以在ABP框架的Blazor模块初始化阶段配置这一解析器:
public override void OnApplicationInitialization(ApplicationInitializationContext context)
{
// 获取本地化服务
IStringLocalizer<YourLocalizationResource> localizer =
context.ServiceProvider.GetRequiredService<IStringLocalizer<YourLocalizationResource>>();
// 配置全局属性名解析器
ValidatorOptions.Global.DisplayNameResolver = (type, memberInfo, expression) =>
{
return localizer[memberInfo.Name];
};
}
实现原理
-
本地化服务获取:通过ABP框架的依赖注入系统获取
IStringLocalizer实例,它负责根据当前语言环境返回对应的翻译文本。 -
属性名解析:
DisplayNameResolver是一个委托,接收三个参数:type:验证对象的类型memberInfo:成员信息(属性或字段)expression:成员表达式
-
本地化转换:使用
IStringLocalizer将成员名称转换为本地化文本,如果资源文件中没有对应翻译,则返回原始成员名。
验证器定义
配置完成后,验证器可以简化定义,不再需要为每个属性单独指定显示名称:
public class ApplicationTypeValidator : AbstractValidator<CreateApplicationDto>
{
public ApplicationTypeValidator()
{
RuleFor(x => x.Type).NotNull().NotEmpty();
// 属性名将自动通过全局解析器本地化
}
}
最佳实践
-
资源文件管理:确保在本地化资源文件中为所有需要验证的属性名添加翻译条目。
-
回退机制:考虑在解析器中添加逻辑处理未找到翻译的情况,例如返回成员名称或提供默认值。
-
性能考虑:频繁的本地化解析可能影响性能,ABP框架的本地化服务已经做了缓存优化。
-
测试验证:在不同语言环境下测试验证错误消息,确保所有属性名正确显示。
扩展应用
这种配置方式不仅适用于属性名本地化,还可以扩展用于:
- 自定义错误消息格式
- 根据业务规则动态调整显示名称
- 实现复杂的属性名映射逻辑
总结
通过在ABP框架的Blazor模块中配置FluentValidation的全局属性名解析器,我们实现了验证属性名的自动本地化。这种方法减少了重复代码,提高了开发效率,同时保持了系统的灵活性和可维护性。开发者可以根据项目需求进一步定制解析逻辑,构建更加友好的多语言验证体验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00