Loro-CRDT 1.5.0版本发布:增强实时协作能力的创新特性
Loro是一个基于CRDT(Conflict-Free Replicated Data Type)技术的分布式协作框架,它通过创新的数据结构设计解决了分布式系统中数据一致性的难题。在1.5.0版本中,Loro引入了两个重要的新特性:pre-commit
和first-commit-from-peer
钩子机制,以及全新的EphemeralStore
临时状态管理方案,进一步提升了实时协作场景下的开发体验和性能表现。
强大的提交钩子机制
在分布式协作系统中,操作的提交和同步是核心流程。Loro 1.5.0版本引入了两个关键的钩子机制,为开发者提供了更精细的控制能力。
pre-commit钩子:提交前的最后干预点
pre-commit
钩子允许开发者在每次提交操作执行前修改提交参数。这个特性特别有价值,因为在Loro中,commit()
方法经常被隐式调用,比如在doc.import
、doc.export
、doc.checkout
等方法中都会触发自动提交。如果没有这个钩子,开发者想要为每个提交添加自定义信息时,可能会遗漏这些隐式提交场景。
const doc = new LoroDoc();
doc.setPeerId(0);
doc.subscribePreCommit((e) => {
e.modifier.setMessage("test").setTimestamp(Date.now());
});
这个钩子的一个高级应用场景是构建Merkle DAG(有向无环图)来表示编辑历史。通过结合exportJsonInIdSpan
方法,开发者可以为每个变更计算哈希值,形成完整的变更链:
doc.subscribePreCommit((e) => {
const changes = doc.exportJsonInIdSpan(e.changeMeta);
const hash = crypto.createHash("sha256");
// 计算变更内容的哈希
const sha256Hash = hash.digest("hex");
e.modifier.setMessage(sha256Hash);
});
这种机制不仅能够确保变更历史的完整性验证,还能为分布式系统提供更强大的审计能力。
first-commit-from-peer钩子:新参与者的欢迎仪式
first-commit-from-peer
钩子在某个peer首次向文档提交操作时触发。这个特性非常适合用来初始化peer相关的元数据,比如用户标识信息:
doc.subscribeFirstCommitFromPeer((e) => {
doc.getMap("users").set(e.peer, "user-" + e.peer);
});
这种设计模式使得用户管理系统可以自然地融入文档协作流程,而不需要额外的同步机制。
EphemeralStore:轻量级临时状态管理
在实时协作应用中,除了持久化的文档内容外,还需要处理各种临时状态,如光标位置、选中区域等。传统解决方案通常使用Awareness机制,但随着应用复杂度增加,Awareness的全量同步模式会带来性能问题。
Loro 1.5.0引入了EphemeralStore
作为Awareness的替代方案,它基于时间戳的最后写入胜出(LWW)策略,提供了更灵活的键值存储能力:
const store = new EphemeralStore();
store.set("cursor-position", {x: 100, y: 200});
store.set("online-users", ["UserA", "UserB"]);
与Awareness相比,EphemeralStore
具有以下优势:
- 支持细粒度的键值更新,只有变更的部分会被同步
- 可以按需编码特定键的数据,减少网络传输量
- 提供统一的事件监听机制,简化状态管理
其他改进
1.5.0版本还包含了一些重要的修复和增强:
- 修复了在文本末尾换行符处应用多个样式的问题
- 新增了将当前事务中的操作以JSON格式导出的能力
这些改进使得Loro在处理富文本内容时更加可靠,同时也为开发者提供了更强大的调试和分析工具。
总结
Loro 1.5.0通过引入创新的钩子机制和临时状态管理方案,为构建复杂的实时协作应用提供了更强大的工具集。pre-commit
和first-commit-from-peer
钩子使得开发者能够更精细地控制协作流程,而EphemeralStore
则为临时状态管理提供了更高效的解决方案。这些特性共同推动了CRDT技术在实时协作领域的应用边界,使得开发高性能、可靠的协作应用变得更加简单。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









