在Ubuntu 22.04上编译安装COLMAP的完整指南
2025-05-27 16:47:22作者:傅爽业Veleda
COLMAP是一款强大的开源多视图立体视觉系统,广泛应用于3D重建和计算机视觉领域。本文将详细介绍在Ubuntu 22.04系统上编译安装COLMAP的完整过程,特别是解决CUDA兼容性问题的关键步骤。
环境准备
在开始安装前,需要确保系统满足以下要求:
- Ubuntu 22.04操作系统
- NVIDIA显卡驱动已正确安装
- CUDA工具包(建议12.x版本)
- 基础编译工具链(gcc, g++, cmake等)
安装依赖项
首先安装必要的系统依赖库:
sudo apt-get install \
git \
cmake \
ninja-build \
build-essential \
libboost-program-options-dev \
libboost-filesystem-dev \
libboost-graph-dev \
libboost-system-dev \
libboost-test-dev \
libeigen3-dev \
libflann-dev \
libfreeimage-dev \
libmetis-dev \
libgoogle-glog-dev \
libgtest-dev \
libsqlite3-dev \
libglew-dev \
qtbase5-dev \
libqt5opengl5-dev \
libcgal-dev \
libceres-dev
源码获取与编译
- 克隆COLMAP源码仓库:
git clone https://github.com/colmap/colmap.git
cd colmap
- 创建并进入构建目录:
mkdir build
cd build
- 配置CMake构建参数。这里特别需要注意CUDA架构的指定:
cmake .. -GNinja -DCMAKE_CUDA_ARCHITECTURES=native
-DCMAKE_CUDA_ARCHITECTURES=native参数会自动检测当前GPU的计算能力,生成最优化的CUDA代码。如果知道具体的计算能力版本(如75对应Turing架构),也可以直接指定。
解决权限问题
在编译过程中可能会遇到权限相关的错误,可以通过以下命令解决:
sudo chown -R $(whoami) .
这条命令将当前目录及其子目录的所有权赋予当前用户,避免因权限不足导致的编译失败。
执行编译与安装
- 使用Ninja进行并行编译:
ninja
- 安装到系统目录:
sudo ninja install
常见问题解决
CUDA版本冲突
系统中可能存在多个CUDA版本导致冲突。建议:
- 检查conda环境中的CUDA版本
- 确保系统PATH环境变量指向正确的CUDA安装路径
- 必要时重新安装统一版本的CUDA
编译链接错误
如果遇到链接阶段错误,特别是关于CUDA运行时库的问题,可以尝试:
- 确保CUDA工具包完整安装
- 检查
LD_LIBRARY_PATH是否包含CUDA库路径 - 确认gcc/g++版本与CUDA兼容
Boost库警告
编译过程中可能会出现Boost库相关的警告信息,这通常不会影响功能,可以通过定义BOOST_BIND_GLOBAL_PLACEHOLDERS宏来消除。
验证安装
安装完成后,可以通过以下命令验证:
colmap -h
如果正确显示帮助信息,则表明安装成功。
性能优化建议
-
针对特定GPU架构优化:在CMake配置时指定精确的CUDA计算能力版本,如
-DCMAKE_CUDA_ARCHITECTURES=75。 -
启用更多优化选项:可以添加
-DCMAKE_BUILD_TYPE=Release以获得更好的运行时性能。 -
使用ccache加速编译:安装ccache并在CMake配置中添加
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache。
通过以上步骤,用户可以在Ubuntu 22.04系统上成功编译安装支持CUDA加速的COLMAP,为后续的3D重建任务提供强大的工具支持。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355