ThingsBoard仪表板中实现多设备属性聚合统计的技术方案
2025-05-12 23:31:21作者:郜逊炳
在物联网平台ThingsBoard的实际应用中,我们经常需要对多个设备的同类属性进行聚合统计。本文将以一个典型场景为例,详细介绍如何实现跨设备的属性值汇总展示。
需求场景分析
假设我们管理着多个物联网设备,每个设备都有两个关键指标:
- good_count:正常运行计数
- bad_count:异常运行计数
用户希望在仪表板中直观地看到所有设备的good_count总和与bad_count总和的对比情况,而不是每个设备单独显示。
原生功能的局限性
ThingsBoard的标准仪表板组件(如柱状图)在直接使用时会存在以下限制:
- 当选择多个设备的相同属性时,默认会为每个设备创建单独的柱状条
- 无法直接在可视化组件中进行跨设备的数学运算
- 缺乏原生的属性值聚合功能
解决方案
方案一:使用规则链聚合计算
-
创建聚合规则节点 在规则链中使用"Aggregate Latest"节点,该节点可以:
- 收集来自多个设备的最新数据
- 对指定属性执行SUM、AVG等聚合运算
- 将结果保存到指定的资产或设备实体中
-
配置聚合逻辑
- 设置源设备组
- 定义目标实体(通常创建一个专门的聚合设备)
- 配置good_count和bad_count的求和运算
-
仪表板展示 在仪表板中直接引用聚合设备的数据,即可显示跨设备的统计结果
方案二:使用计算字段(4.0+版本)
对于较新版本的ThingsBoard,可以采用更灵活的计算字段方案:
-
创建虚拟计算字段
- 在设备配置中定义计算字段
- 编写表达式引用其他设备的属性值
- 设置聚合运算公式
-
实时计算优势
- 计算结果会随源数据变化自动更新
- 无需额外的规则链处理
- 支持更复杂的数学表达式
扩展应用:设备状态统计
同样的技术方案可以应用于设备状态监控场景,例如:
- 统计在线设备数量
- 计算设备平均运行时长
- 汇总区域故障设备数量
通过将原始设备数据聚合处理后,可以在仪表板中创建更简洁、更有业务价值的数据可视化。
最佳实践建议
- 对于大规模设备部署,建议采用分层聚合策略
- 定期清理历史聚合数据以避免存储压力
- 为聚合实体设计清晰的命名规范
- 考虑使用设备组标签来简化聚合范围定义
通过以上方案,用户可以突破标准仪表板组件的限制,实现更符合业务需求的跨设备数据聚合展示。这种方案特别适合需要从宏观层面分析设备群体状态的物联网应用场景。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492