ThingsBoard仪表板中实现多设备属性聚合统计的技术方案
2025-05-12 19:42:08作者:郜逊炳
在物联网平台ThingsBoard的实际应用中,我们经常需要对多个设备的同类属性进行聚合统计。本文将以一个典型场景为例,详细介绍如何实现跨设备的属性值汇总展示。
需求场景分析
假设我们管理着多个物联网设备,每个设备都有两个关键指标:
- good_count:正常运行计数
- bad_count:异常运行计数
用户希望在仪表板中直观地看到所有设备的good_count总和与bad_count总和的对比情况,而不是每个设备单独显示。
原生功能的局限性
ThingsBoard的标准仪表板组件(如柱状图)在直接使用时会存在以下限制:
- 当选择多个设备的相同属性时,默认会为每个设备创建单独的柱状条
- 无法直接在可视化组件中进行跨设备的数学运算
- 缺乏原生的属性值聚合功能
解决方案
方案一:使用规则链聚合计算
-
创建聚合规则节点 在规则链中使用"Aggregate Latest"节点,该节点可以:
- 收集来自多个设备的最新数据
- 对指定属性执行SUM、AVG等聚合运算
- 将结果保存到指定的资产或设备实体中
-
配置聚合逻辑
- 设置源设备组
- 定义目标实体(通常创建一个专门的聚合设备)
- 配置good_count和bad_count的求和运算
-
仪表板展示 在仪表板中直接引用聚合设备的数据,即可显示跨设备的统计结果
方案二:使用计算字段(4.0+版本)
对于较新版本的ThingsBoard,可以采用更灵活的计算字段方案:
-
创建虚拟计算字段
- 在设备配置中定义计算字段
- 编写表达式引用其他设备的属性值
- 设置聚合运算公式
-
实时计算优势
- 计算结果会随源数据变化自动更新
- 无需额外的规则链处理
- 支持更复杂的数学表达式
扩展应用:设备状态统计
同样的技术方案可以应用于设备状态监控场景,例如:
- 统计在线设备数量
- 计算设备平均运行时长
- 汇总区域故障设备数量
通过将原始设备数据聚合处理后,可以在仪表板中创建更简洁、更有业务价值的数据可视化。
最佳实践建议
- 对于大规模设备部署,建议采用分层聚合策略
- 定期清理历史聚合数据以避免存储压力
- 为聚合实体设计清晰的命名规范
- 考虑使用设备组标签来简化聚合范围定义
通过以上方案,用户可以突破标准仪表板组件的限制,实现更符合业务需求的跨设备数据聚合展示。这种方案特别适合需要从宏观层面分析设备群体状态的物联网应用场景。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
Ascend Extension for PyTorch
Python
123
149
暂无简介
Dart
583
127
React Native鸿蒙化仓库
JavaScript
227
306
仓颉编译器源码及 cjdb 调试工具。
C++
121
395
仓颉编程语言运行时与标准库。
Cangjie
130
408
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205