ThingsBoard仪表板中实现多设备属性聚合统计的技术方案
2025-05-12 13:22:58作者:郜逊炳
在物联网平台ThingsBoard的实际应用中,我们经常需要对多个设备的同类属性进行聚合统计。本文将以一个典型场景为例,详细介绍如何实现跨设备的属性值汇总展示。
需求场景分析
假设我们管理着多个物联网设备,每个设备都有两个关键指标:
- good_count:正常运行计数
- bad_count:异常运行计数
用户希望在仪表板中直观地看到所有设备的good_count总和与bad_count总和的对比情况,而不是每个设备单独显示。
原生功能的局限性
ThingsBoard的标准仪表板组件(如柱状图)在直接使用时会存在以下限制:
- 当选择多个设备的相同属性时,默认会为每个设备创建单独的柱状条
- 无法直接在可视化组件中进行跨设备的数学运算
- 缺乏原生的属性值聚合功能
解决方案
方案一:使用规则链聚合计算
-
创建聚合规则节点 在规则链中使用"Aggregate Latest"节点,该节点可以:
- 收集来自多个设备的最新数据
- 对指定属性执行SUM、AVG等聚合运算
- 将结果保存到指定的资产或设备实体中
-
配置聚合逻辑
- 设置源设备组
- 定义目标实体(通常创建一个专门的聚合设备)
- 配置good_count和bad_count的求和运算
-
仪表板展示 在仪表板中直接引用聚合设备的数据,即可显示跨设备的统计结果
方案二:使用计算字段(4.0+版本)
对于较新版本的ThingsBoard,可以采用更灵活的计算字段方案:
-
创建虚拟计算字段
- 在设备配置中定义计算字段
- 编写表达式引用其他设备的属性值
- 设置聚合运算公式
-
实时计算优势
- 计算结果会随源数据变化自动更新
- 无需额外的规则链处理
- 支持更复杂的数学表达式
扩展应用:设备状态统计
同样的技术方案可以应用于设备状态监控场景,例如:
- 统计在线设备数量
- 计算设备平均运行时长
- 汇总区域故障设备数量
通过将原始设备数据聚合处理后,可以在仪表板中创建更简洁、更有业务价值的数据可视化。
最佳实践建议
- 对于大规模设备部署,建议采用分层聚合策略
- 定期清理历史聚合数据以避免存储压力
- 为聚合实体设计清晰的命名规范
- 考虑使用设备组标签来简化聚合范围定义
通过以上方案,用户可以突破标准仪表板组件的限制,实现更符合业务需求的跨设备数据聚合展示。这种方案特别适合需要从宏观层面分析设备群体状态的物联网应用场景。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++036Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0283Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程视频测验中的Tab键导航问题解析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp音乐播放器项目中的函数调用问题解析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析7 freeCodeCamp课程页面空白问题的技术分析与解决方案8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析
最新内容推荐
小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能 STM32到GD32项目移植完全指南:从兼容性到实战技巧 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
160
2.03 K

deepin linux kernel
C
22
6

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
533
60

React Native鸿蒙化仓库
C++
198
279

Ascend Extension for PyTorch
Python
46
78

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
947
556

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
381
17

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
996
396