ViDeNN 项目亮点解析
2025-05-20 04:11:26作者:段琳惟
项目基础介绍
ViDeNN(Deep Blind Video Denoising)是一个基于深度学习的视频去噪开源项目。该项目由 Claus Michele 开发,目的是通过深度神经网络去除视频中的噪声,尤其是针对受到加性白高斯噪声(AWGN)和低光照条件影响视频的去噪。ViDeNN 不需要任何关于输入视频内容的先验信息,能够在盲目条件下工作。
项目代码目录及介绍
项目的主要目录结构如下:
data/:包含训练代码和所需数据集。img/:存放处理过程中使用的图像。lowlight_dataset/:低光照数据集,用于测试。Spatial-CNN/:空间卷积神经网络相关代码,用于空间去噪。Temp3-CNN/:基于空间去噪结果的时序去噪代码。ckpt_videnn/:存放训练好的模型权重文件。denoise.sh:命令行脚本,用于执行去噪操作。main_ViDeNN.py:ViDeNN 主程序文件。model_ViDeNN.py:定义 ViDeNN 模型的代码。requirements.txt:项目依赖的 Python 包列表。README.md:项目说明文件。
项目亮点功能拆解
- 视频去噪:ViDeNN 能够处理受不同类型噪声影响视频的去噪,包括 AWGN 和低光照视频。
- 无需先验信息:在去噪过程中,ViDeNN 不需要关于视频内容的任何信息。
- 命令行工具:提供了
denoise.sh脚本,便于用户通过命令行进行视频去噪。
项目主要技术亮点拆解
- 全卷积网络:ViDeNN 使用了全卷积神经网络架构,可以处理不同尺寸的视频。
- 分阶段训练:训练过程分为空间去噪网络(Spatial-CNN)和时序去噪网络(Temp3-CNN)两个阶段。
- 内存高效:训练时使用大文件存储处理后的图像块,减少内存使用。
与同类项目对比的亮点
- 去噪效果:与其他去噪项目相比,ViDeNN 对特定类型噪声(如 AWGN 和低光照噪声)的去噪效果更佳。
- 训练灵活性:项目支持自定义训练参数,如学习率、批大小和迭代次数,使模型训练更加灵活。
- 开放性:项目遵循 MIT 许可,鼓励开源社区的贡献和扩展。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.87 K
暂无简介
Dart
671
155
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
309
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1