TradingView数据抓取终极指南:快速获取金融市场数据的完整教程
2026-02-07 04:26:48作者:范靓好Udolf
想要构建机器学习模型进行金融市场分析?TradingView数据抓取工具为您提供了高效获取高质量金融数据的解决方案。这款开源工具能够从TradingView图表中提取价格和技术指标数据,为数据科学家和量化分析师节省大量宝贵时间。
金融数据分析图表
🚀 核心功能特色
一键式数据导出
无需复杂配置,只需输入TradingView用户发布的图表链接,即可自动抓取完整数据并导出为标准CSV格式。
全方位数据覆盖
- 价格数据:开盘价、最高价、最低价、收盘价
- 成交量信息:每个时间段的交易量统计
- 技术指标:支持用户添加的所有技术分析指标
- 时间序列:完整的时间戳信息,便于时序分析
智能数据匹配
工具内置智能算法,能够自动识别和匹配技术指标名称与数据,确保输出数据的准确性和一致性。
📋 快速入门指南
环境准备与安装
git clone https://gitcode.com/gh_mirrors/tr/TradingView-data-scraper
cd TradingView-data-scraper
pip3 install -r requirements.txt
服务启动方式
本地开发环境运行:
python app.py
云端部署运行:
python runp-heroku.py
🏗️ 技术架构详解
核心组件设计
项目基于Flask框架构建,采用Pyppeteer进行网页自动化操作,模拟真实浏览器行为,确保数据抓取的完整性和准确性。
数据处理流程
- 页面加载:通过Pyppeteer加载TradingView图表页面
- 数据解析:使用BeautifulSoup解析HTML内容
- JSON提取:从页面中提取包含金融数据的JSON对象
- CSV格式化:将数据转换为标准CSV格式输出
依赖库说明
- Flask:轻量级Web框架,提供API服务
- Pyppeteer:无头浏览器控制,实现网页自动化
- BeautifulSoup:HTML解析库,提取页面数据
- Moment:时间处理库,格式化时间戳数据
💡 应用实践案例
机器学习数据集构建
通过批量抓取多个TradingView图表数据,您可以快速构建用于训练预测模型的完整数据集。工具支持多种时间周期的数据抓取,满足不同模型训练需求。
技术分析研究
研究人员可以利用该工具获取历史价格数据,验证各种技术分析方法的有效性,为投资策略提供数据支持。
量化交易回测
获取的历史数据可直接用于量化交易策略的回测分析,评估策略在不同市场环境下的表现。
🔧 疑难问题排解
数据抓取失败处理
- 确保输入的URL是用户发布的图表链接,格式如:
https://www.tradingview.com/chart/SPY/vjYfwgMu-SPY-Export-Test/ - 检查图表中是否包含足够的历史数据
- 避免在图表中使用过多技术指标,以免数据量过大
性能优化建议
- 在本地环境中运行脚本,避免服务器限制
- 分批次抓取数据,减少单次请求的数据量
- 手动合并多个CSV文件,构建完整数据集
数据格式说明
输出的CSV文件包含标准金融数据列:
- time:时间戳
- open:开盘价
- high:最高价
- low:最低价
- close:收盘价
- vol:成交量
- %:涨跌幅百分比
这款TradingView数据抓取工具为金融数据分析和机器学习项目提供了简单高效的解决方案,让您能够专注于核心的数据分析和模型构建工作,大大简化了数据收集过程。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178