facebook-scraper 的安装和配置教程
1. 项目基础介绍
facebook-scraper 是一个开源项目,主要用于刮取 Facebook 公开页面的信息,无需使用 API 密钥。这个项目是基于 Python 编程语言开发的,它可以让用户获取 Facebook 上的帖子、评论、反应等数据。
2. 关键技术和框架
本项目主要使用 Python 语言,依赖于一些 Python 的第三方库,如 requests 用于发送网络请求,BeautifulSoup 或 lxml 用于解析 HTML 页面,以及 video_downloader 用于视频下载等。
3. 安装和配置准备工作
在开始安装前,请确保您的系统中已安装了 Python 环境。如果没有,请访问 Python 官网下载并安装。
此外,您可能需要安装以下依赖库:
- requests
- beautifulsoup4 或 lxml
- video_downloader
您可以使用 pip 命令来安装这些依赖库。
pip install requests beautifulsoup4 video_downloader
安装步骤
方式一:通过 PyPI 安装
最简单的安装方法是使用 pip 从 Python 包索引(PyPI)安装最新发布的版本:
pip install facebook-scraper
方式二:从源代码安装
如果您想安装最新版本的 facebook-scraper,可以从 GitHub 上的源代码进行安装:
-
克隆 GitHub 仓库:
git clone https://github.com/moda20/facebook-scraper.git -
进入克隆后的目录:
cd facebook-scraper -
使用 pip 安装:
pip install .
配置指南
安装完成后,您需要准备一些配置文件和参数来使用这个工具。
-
获取 mbasic Headers:为了提高抓取效率和质量,您需要从 Facebook 的移动版网页(mbasic)获取 headers。您可以在浏览器的开发者工具中选择一个高端设备(如 Samsung S20 Ultra),然后复制 headers 到一个文件中,例如
mbasicHeaders.json。 -
使用示例:
from facebook_scraper import get_posts import json with open('./mbasicHeaders.json', 'r') as file: mbasic_headers = json.load(file) for post in get_posts('NintendoAmerica', base_url="https://mbasic.facebook.com", start_url="https://mbasic.facebook.com/NintendoAmerica?v=timeline", pages=1): print(post['text'][:50])
在上述代码中,get_posts 函数是核心,用于获取指定页面的帖子。您可以通过函数参数自定义获取帖子的行为,如指定页面、帖子数量、是否获取评论和反应等。
以上就是 facebook-scraper 的安装和配置指南,按照这些步骤操作,您应该可以顺利地开始刮取 Facebook 的数据了。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00