facebook-scraper 的安装和配置教程
1. 项目基础介绍
facebook-scraper 是一个开源项目,主要用于刮取 Facebook 公开页面的信息,无需使用 API 密钥。这个项目是基于 Python 编程语言开发的,它可以让用户获取 Facebook 上的帖子、评论、反应等数据。
2. 关键技术和框架
本项目主要使用 Python 语言,依赖于一些 Python 的第三方库,如 requests 用于发送网络请求,BeautifulSoup 或 lxml 用于解析 HTML 页面,以及 video_downloader 用于视频下载等。
3. 安装和配置准备工作
在开始安装前,请确保您的系统中已安装了 Python 环境。如果没有,请访问 Python 官网下载并安装。
此外,您可能需要安装以下依赖库:
- requests
- beautifulsoup4 或 lxml
- video_downloader
您可以使用 pip 命令来安装这些依赖库。
pip install requests beautifulsoup4 video_downloader
安装步骤
方式一:通过 PyPI 安装
最简单的安装方法是使用 pip 从 Python 包索引(PyPI)安装最新发布的版本:
pip install facebook-scraper
方式二:从源代码安装
如果您想安装最新版本的 facebook-scraper,可以从 GitHub 上的源代码进行安装:
-
克隆 GitHub 仓库:
git clone https://github.com/moda20/facebook-scraper.git -
进入克隆后的目录:
cd facebook-scraper -
使用 pip 安装:
pip install .
配置指南
安装完成后,您需要准备一些配置文件和参数来使用这个工具。
-
获取 mbasic Headers:为了提高抓取效率和质量,您需要从 Facebook 的移动版网页(mbasic)获取 headers。您可以在浏览器的开发者工具中选择一个高端设备(如 Samsung S20 Ultra),然后复制 headers 到一个文件中,例如
mbasicHeaders.json。 -
使用示例:
from facebook_scraper import get_posts import json with open('./mbasicHeaders.json', 'r') as file: mbasic_headers = json.load(file) for post in get_posts('NintendoAmerica', base_url="https://mbasic.facebook.com", start_url="https://mbasic.facebook.com/NintendoAmerica?v=timeline", pages=1): print(post['text'][:50])
在上述代码中,get_posts 函数是核心,用于获取指定页面的帖子。您可以通过函数参数自定义获取帖子的行为,如指定页面、帖子数量、是否获取评论和反应等。
以上就是 facebook-scraper 的安装和配置指南,按照这些步骤操作,您应该可以顺利地开始刮取 Facebook 的数据了。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00