PyKAN项目在MNIST数据集上的应用探索
2025-05-14 03:01:00作者:秋阔奎Evelyn
背景概述
PyKAN作为新型可解释神经网络框架,其在图像分类任务中的潜力值得探索。MNIST手写数字识别作为计算机视觉领域的经典基准数据集,常被用于验证模型的基础性能。本文将深入分析PyKAN在该任务上的应用实践与技术要点。
架构设计挑战
原始MNIST图像为28×28灰度图,展平后形成784维输入向量。直接应用PyKAN面临两大核心挑战:
- 内存瓶颈:当采用[784,10]的直连架构时,即使设置k=3、grid=3,模型参数规模会急剧膨胀至30GB以上,远超常规GPU显存容量
- 计算效率:相比传统MLP的快速收敛特性,KAN结构需要更精细的超参数调优
优化实践方案
通过社区实践总结出以下有效方案:
1. 降维预处理策略
- 采用卷积层或Vision Transformer的patch编码作为特征提取器
- 将原始维度从784压缩至100以下
- 配合torch.nn.Unfold实现空间局部性保持
2. 混合架构设计
# 示例代码框架
feature_extractor = CNN_Backbone() # 输出维度64
kan_layer = KAN(width=[64, 32, 10], grid=3, k=3)
3. 关键参数配置
- 激活函数:优先采用B样条基函数
- 网格密度:建议grid=3~5避免过拟合
- 多项式阶数:k=3在精度与效率间取得较好平衡
性能对比
在相同训练条件下(Adam优化器,lr=0.001):
| 模型类型 | 参数量 | 测试准确率 | 训练耗时 |
|---|---|---|---|
| 传统MLP | 104K | 93.93% | <1分钟 |
| 优化后PyKAN | 约82K | 97.03% | 约30分钟 |
技术启示
- 维度控制:输入维度>100时需配合特征工程
- 硬件考量:建议使用至少16GB显存的GPU设备
- 精度优势:适当调优后KAN结构可超越传统MLP
- 可解释性:可可视化各激活函数的决策贡献度
未来方向
- 开发专用的图像处理KAN卷积模块
- 探索动态网格调整策略
- 研究混合精度训练方案
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
480
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882