推荐开源项目:reading_time — 智能阅读时间估计器
在信息爆炸的时代,估算一篇文章的阅读时间成为了提升用户体验的关键。这便是reading_time的作用所在。这是一个基于Liquid模板语言的过滤器插件,能够智能地计算HTML文本中的单词数量,并预测阅读完整篇文章所需的时间。
安装与使用
安装reading_time
非常简单,只需要通过RubyGems运行命令gem install liquid_reading_time
。如果你正在使用Jekyll,可参照Jekyll文档来安装插件。这个插件依赖于Nokogiri,因此手动安装时别忘了添加这个依赖。
在实际使用中,你可以利用两个提供的函数:
-
reading_time
这个函数会返回一个整数,表示阅读输入文本所需的分钟数。例如,在Jekyll的布局文件中,可以这样使用:{% capture time %}{{ content | reading_time }}{% endcapture %} <p>这篇文章大约需要{{ time }}分钟阅读。</p>
结合pluralize过滤器,还可以处理单复数形式:
<p>这篇文章大约需要{{ content | reading_time | pluralize: "分钟" }}阅读。</p>
-
count_words
此函数则返回输入文本中的单词总数,同样接受HTML作为输入。
精准计时与智能忽略
reading_time
和count_words
都试图以最聪明的方式计算单词。它们不会在以下HTML元素内部计数:area, audio, canvas, code, embed, footer, form, img, map, math, nav, object, pre, script, svg, table, track, 和 video。这种设计旨在避免那些非正文部分的词汇影响到总数。
该插件默认的阅读速度为每分钟270个单词,这个值基于一般人的阅读速率。
作者与版本历史
该项目由Benjamin Esham创建,并托管在GitHub上,欢迎提交Pull Request。
版本更新
- v1.1.3 (2017-07-19): 更新了依赖,表明插件兼容Liquid 4。
- v1.1.2 (2015-03-07): 改进了单词分割规则,增加了单元测试,并支持Liquid 3.x。
- 更多版本信息,请参考项目仓库的历史记录。
许可证
reading_time
遵循ISC许可证,详细信息可在LICENSE.md文件中查看。
总之,无论你是个人博客作者还是企业网站开发者,reading_time
都是一个值得采用的工具,它将帮助你的读者更好地管理他们的时间,提高他们的浏览体验。现在就尝试集成并享受更智能的阅读统计吧!
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~088CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









