推荐开源项目:reading_time — 智能阅读时间估计器
在信息爆炸的时代,估算一篇文章的阅读时间成为了提升用户体验的关键。这便是reading_time的作用所在。这是一个基于Liquid模板语言的过滤器插件,能够智能地计算HTML文本中的单词数量,并预测阅读完整篇文章所需的时间。
安装与使用
安装reading_time非常简单,只需要通过RubyGems运行命令gem install liquid_reading_time。如果你正在使用Jekyll,可参照Jekyll文档来安装插件。这个插件依赖于Nokogiri,因此手动安装时别忘了添加这个依赖。
在实际使用中,你可以利用两个提供的函数:
-
reading_time这个函数会返回一个整数,表示阅读输入文本所需的分钟数。例如,在Jekyll的布局文件中,可以这样使用:{% capture time %}{{ content | reading_time }}{% endcapture %} <p>这篇文章大约需要{{ time }}分钟阅读。</p>结合pluralize过滤器,还可以处理单复数形式:
<p>这篇文章大约需要{{ content | reading_time | pluralize: "分钟" }}阅读。</p> -
count_words此函数则返回输入文本中的单词总数,同样接受HTML作为输入。
精准计时与智能忽略
reading_time和count_words都试图以最聪明的方式计算单词。它们不会在以下HTML元素内部计数:area, audio, canvas, code, embed, footer, form, img, map, math, nav, object, pre, script, svg, table, track, 和 video。这种设计旨在避免那些非正文部分的词汇影响到总数。
该插件默认的阅读速度为每分钟270个单词,这个值基于一般人的阅读速率。
作者与版本历史
该项目由Benjamin Esham创建,并托管在GitHub上,欢迎提交Pull Request。
版本更新
- v1.1.3 (2017-07-19): 更新了依赖,表明插件兼容Liquid 4。
- v1.1.2 (2015-03-07): 改进了单词分割规则,增加了单元测试,并支持Liquid 3.x。
- 更多版本信息,请参考项目仓库的历史记录。
许可证
reading_time遵循ISC许可证,详细信息可在LICENSE.md文件中查看。
总之,无论你是个人博客作者还是企业网站开发者,reading_time都是一个值得采用的工具,它将帮助你的读者更好地管理他们的时间,提高他们的浏览体验。现在就尝试集成并享受更智能的阅读统计吧!
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00