MoE-PEFT 的项目扩展与二次开发
2025-06-09 06:57:21作者:仰钰奇
项目的基础介绍
MoE-PEFT(Mixture of Expert Parameter-Efficient Fine-Tuning)是一个高效的LLM(Large Language Model)微调工厂,基于m-LoRA框架构建。该项目旨在为大型语言模型的高通量微调、评估和推理提供支持,特别适用于使用MoE(Mixture of Expert)以及其他技术如LoRA、DoRA的模型。MoE-PEFT支持多种PEFT算法和各种预训练模型,并与HuggingFace生态系统无缝集成。
项目的核心功能
- 并发微调、评估和推理:支持同时对多个适配器进行微调、评估和推理,共享一个预训练模型。
- MoE PEFT优化:主要针对MixLoRA和其他MoLE实现的优化。
- 多算法支持:支持多种PEFT算法,包括MoLA、LoRAMoE、MixLoRA等。
- 量化支持:提供FP32、FP16、TF32、BF16等多种模型精度和量化方法。
项目使用了哪些框架或库?
MoE-PEFT主要使用了以下框架和库:
- HuggingFace:用于模型和数据的下载,以及生态系统的集成。
- PyTorch:深度学习框架,用于模型的训练和推理。
- bitsandbytes:用于量化操作。
- ninja、flash-attn:用于支持Flash Attention。
项目的代码目录及介绍
项目的代码目录结构如下:
TUDB-Labs/MoE-PEFT
├── .github/
│ ├── workflows/
│ │ ├── misc/
│ │ ├── moe_peft/
│ │ └── prompts/
│ └── templates/
├── Dockerfile
├── Install.md
├── LICENSE
├── README.md
├── evaluator.py
├── generate.py
├── inference.py
├── launch.py
├── moe_peft.py
├── pyproject.toml
├── requirements.txt
└── tests/
- .github/:存放GitHub工作流文件,用于自动化任务。
- Dockerfile:用于创建Docker容器。
- Install.md:安装指南。
- README.md:项目说明。
- evaluator.py、generate.py、inference.py、launch.py、moe_peft.py:核心代码文件。
- tests/:测试代码和示例数据。
对项目进行扩展或者二次开发的方向
- 算法扩展:可以增加更多PEFT算法的支持,以覆盖更广泛的场景和需求。
- 模型集成:集成更多预训练模型,提高项目的适用性和灵活性。
- 量化优化:优化量化算法,减少精度损失,提高推理效率。
- 用户界面:开发更加友好的用户界面,提高用户体验。
- 性能优化:针对不同硬件平台进行性能优化,提高计算效率。
- 分布式训练:集成分布式训练功能,支持大规模模型的训练。
通过上述扩展和二次开发,MoE-PEFT将能够更好地服务于LLM领域的研究和应用。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility.Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
519
3.69 K
暂无简介
Dart
760
182
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
569
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
160
方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
169
53
Ascend Extension for PyTorch
Python
321
373
React Native鸿蒙化仓库
JavaScript
301
347