Brax项目中Evaluator.run_evaluation编译卡顿问题分析与解决方案
问题背景
在Brax物理仿真框架的使用过程中,当用户从0.11.0版本升级到0.12.1版本后,发现使用PPO算法训练时出现了严重的性能问题。具体表现为acting.Evaluator.run_evaluation方法的编译过程异常缓慢,有时甚至需要超过12小时才能完成,而在之前的版本中这一过程仅需几分钟即可完成。
问题复现与分析
通过构建一个简化的测试环境,我们可以清晰地复现这个问题。测试环境基于Franka FR3机器人模型,关键特征包括:
- 使用MJX作为后端
- 包含mocap(运动捕捉)体
- 设置了1024个并行环境
- 使用128个评估环境
经过深入排查,发现该问题与以下因素密切相关:
-
JAX版本影响:当JAX版本升级到0.4.36及以上时会出现此问题,而0.4.35及以下版本则表现正常。这表明问题很可能源于JAX内部的某些变更。
-
mocap体相关操作:当环境中包含mocap体并对mocap_pos属性进行操作时,问题会显现。移除相关mocap操作后,编译时间恢复正常。
-
编译阶段卡顿:通过XLA调试标志分析,发现编译过程在
generate_eval_unroll阶段停滞不前,这是Brax评估流程中的一个关键步骤。
技术细节探究
问题的根源在于JAX 0.4.36版本引入的"stackless"追踪机制。这一变更虽然旨在优化某些场景下的性能,但在处理包含mocap体的Brax环境时却导致了编译时间的急剧增加。
特别值得注意的是,并非所有包含mocap体的环境都会触发此问题。例如,在Humanoid标准环境中添加mocap体后,编译仍然可以正常完成。这表明问题可能与特定的模型结构或数据布局有关。
解决方案
目前有以下几种可行的解决方案:
-
降级JAX版本:将JAX版本回退到0.4.35可以立即解决问题。
-
减少评估环境数量:将
num_eval_envs参数设置为较低的值(如32)可以缓解问题。 -
避免特定mocap操作:如果应用场景允许,可以暂时移除对mocap_pos的操作。
-
等待官方修复:JAX团队已经确认了此问题并正在进行修复,后续版本将彻底解决这一兼容性问题。
最佳实践建议
对于Brax用户,特别是在使用MJX后端和复杂机器人模型时,建议:
- 在升级依赖库时进行充分的兼容性测试
- 对于关键训练任务,考虑固定主要依赖版本
- 监控JAX项目的更新,及时获取问题修复信息
- 在遇到类似编译性能问题时,可以通过XLA调试标志收集更多信息
总结
这一问题展示了深度学习框架与物理仿真引擎在复杂交互场景下可能出现的微妙兼容性问题。通过系统的版本控制和问题分析方法,我们能够准确定位问题根源并找到有效的应对策略。随着JAX团队的持续优化,预期这类问题将得到根本性解决,为Brax用户提供更加稳定高效的开发体验。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00