nnUNet多GPU训练配置指南
2025-06-02 13:26:56作者:宣聪麟
多GPU训练的必要性
在医学图像分割任务中,nnUNet作为当前最先进的解决方案之一,经常需要处理大尺寸的3D医学影像数据。当使用3D全分辨率模型(3d_fullres)时,经常会遇到单个GPU显存不足以支持理想patch size的情况。这时,采用多GPU并行训练就成为提升模型性能的关键手段。
nnUNet多GPU训练实现方案
nnUNet提供了两种主要方式来实现多GPU训练:
1. 直接使用DDP模式
最简便的方法是使用PyTorch的分布式数据并行(DDP)模式,通过在训练命令中指定GPU数量即可:
nnUNetv2_train DATASET_NAME_OR_ID 2d 0 --num_gpus X
其中X为要使用的GPU数量。这种方法会自动将数据并行分配到多个GPU上,适合大多数标准场景。
2. 自定义Plans文件
对于更高级的需求,特别是当需要调整patch size等关键参数时,可以通过自定义plans文件来实现:
-
理解Plans文件:plans.json文件包含了nnUNet训练的所有关键配置参数,如patch size、batch size、网络架构等
-
创建自定义Planner:可以继承nnUNet的默认planner类,重写相关方法来定义自己的配置策略
-
修改关键参数:
- 增大patch_size以适应更大的显存容量
- 调整batch_size以充分利用多GPU优势
- 优化网络结构参数
-
应用自定义Plans:将修改后的plans文件放入nnUNet_preprocessed文件夹,并在训练时指定使用该配置
实践建议
-
显存优化:在多GPU训练前,建议先在单GPU上测试不同patch size的显存占用,找到最佳平衡点
-
学习率调整:多GPU训练时通常需要适当增大学习率,因为有效的batch size增加了
-
性能监控:使用nvidia-smi等工具监控各GPU的利用率,确保负载均衡
-
混合精度训练:考虑启用混合精度训练以进一步节省显存并加速训练过程
常见问题解决
- 显存不足:即使使用多GPU,如果patch size设置过大仍可能导致显存不足,需要合理调整
- 通信开销:多GPU训练会增加GPU间的通信开销,对于小batch size可能反而降低效率
- 收敛性变化:较大的有效batch size可能影响模型收敛特性,需要适当调整训练策略
通过合理配置多GPU训练,nnUNet用户可以显著提升模型性能,特别是在处理大尺寸3D医学图像时,能够突破单GPU的显存限制,获得更好的分割效果。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217