keras-sd-serving 的项目扩展与二次开发
2025-06-24 04:50:42作者:魏献源Searcher
项目的基础介绍
keras-sd-serving 是一个开源项目,旨在展示如何使用 Keras 框架部署 Stable Diffusion 模型。该项目提供了多种方式来部署 Stable Diffusion,包括使用 TensorFlow Serving、Hugging Face Endpoint 和 FastAPI 等框架。此外,它还支持 Stable Diffusion 的不同版本,并提供了相应的 Docker 镜像。
项目的核心功能
项目的核心功能是部署 Stable Diffusion 模型,它包括以下几种部署方式:
- 单一端点部署:将 Stable Diffusion 的编码器、扩散模型和解码器打包到一个端点中。
- 三端点部署:分别部署编码器、扩散模型和解码器到不同的端点。
- 一端点加两个本地 API:将扩散模型部署到云端端点,而编码器和解码器在本地环境中运行。
项目使用了哪些框架或库?
项目使用了以下框架或库:
- Keras:用于构建和训练深度学习模型。
- TensorFlow Serving:用于部署 TensorFlow 模型到生产环境。
- Hugging Face Endpoint:用于部署机器学习模型和自定义处理逻辑。
- FastAPI:用于构建高性能的 Web API。
- Docker:用于容器化应用程序,简化部署过程。
项目的代码目录及介绍
项目的代码目录如下:
assets/:存放项目相关资源文件。fastapi/:包含使用 FastAPI 部署 Stable Diffusion 的代码。hf_custom_handlers/:包含为 Hugging Face Endpoint 定制的处理逻辑。notebooks/:包含用于演示和测试的 Jupyter 笔记本文件。tfserving/:包含使用 TensorFlow Serving 部署 Stable Diffusion 的代码。LICENSE:项目的许可文件。README.md:项目的说明文件。
对项目进行扩展或者二次开发的方向
1. 支持更多框架和库
目前项目支持 TensorFlow Serving、Hugging Face Endpoint 和 FastAPI。可以扩展支持其他流行的机器学习模型部署框架,如 PyTorch Serving 或 ONNX Runtime。
2. 增加模型版本兼容性
随着 Stable Diffusion 模型的更新,项目可以增加对新版本的兼容性,确保支持最新的模型特性。
3. 优化性能和资源消耗
通过优化模型部署的代码,提高性能并减少资源消耗,例如通过模型量化或使用更高效的算法。
4. 增加可视化工具
开发可视化工具来监控模型性能和系统资源使用情况,帮助开发者更好地理解和维护系统。
5. 支持多种部署环境
目前项目支持云端部署,可以扩展支持边缘计算或移动设备部署,以适应更多应用场景。
通过这些扩展和二次开发,keras-sd-serving 项目将能够更好地服务于更广泛的使用者,并在不同领域发挥更大的作用。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.76 K
暂无简介
Dart
773
192
Ascend Extension for PyTorch
Python
343
405
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249