keras-sd-serving 的项目扩展与二次开发
2025-06-24 08:23:56作者:魏献源Searcher
项目的基础介绍
keras-sd-serving 是一个开源项目,旨在展示如何使用 Keras 框架部署 Stable Diffusion 模型。该项目提供了多种方式来部署 Stable Diffusion,包括使用 TensorFlow Serving、Hugging Face Endpoint 和 FastAPI 等框架。此外,它还支持 Stable Diffusion 的不同版本,并提供了相应的 Docker 镜像。
项目的核心功能
项目的核心功能是部署 Stable Diffusion 模型,它包括以下几种部署方式:
- 单一端点部署:将 Stable Diffusion 的编码器、扩散模型和解码器打包到一个端点中。
- 三端点部署:分别部署编码器、扩散模型和解码器到不同的端点。
- 一端点加两个本地 API:将扩散模型部署到云端端点,而编码器和解码器在本地环境中运行。
项目使用了哪些框架或库?
项目使用了以下框架或库:
- Keras:用于构建和训练深度学习模型。
- TensorFlow Serving:用于部署 TensorFlow 模型到生产环境。
- Hugging Face Endpoint:用于部署机器学习模型和自定义处理逻辑。
- FastAPI:用于构建高性能的 Web API。
- Docker:用于容器化应用程序,简化部署过程。
项目的代码目录及介绍
项目的代码目录如下:
assets/:存放项目相关资源文件。fastapi/:包含使用 FastAPI 部署 Stable Diffusion 的代码。hf_custom_handlers/:包含为 Hugging Face Endpoint 定制的处理逻辑。notebooks/:包含用于演示和测试的 Jupyter 笔记本文件。tfserving/:包含使用 TensorFlow Serving 部署 Stable Diffusion 的代码。LICENSE:项目的许可文件。README.md:项目的说明文件。
对项目进行扩展或者二次开发的方向
1. 支持更多框架和库
目前项目支持 TensorFlow Serving、Hugging Face Endpoint 和 FastAPI。可以扩展支持其他流行的机器学习模型部署框架,如 PyTorch Serving 或 ONNX Runtime。
2. 增加模型版本兼容性
随着 Stable Diffusion 模型的更新,项目可以增加对新版本的兼容性,确保支持最新的模型特性。
3. 优化性能和资源消耗
通过优化模型部署的代码,提高性能并减少资源消耗,例如通过模型量化或使用更高效的算法。
4. 增加可视化工具
开发可视化工具来监控模型性能和系统资源使用情况,帮助开发者更好地理解和维护系统。
5. 支持多种部署环境
目前项目支持云端部署,可以扩展支持边缘计算或移动设备部署,以适应更多应用场景。
通过这些扩展和二次开发,keras-sd-serving 项目将能够更好地服务于更广泛的使用者,并在不同领域发挥更大的作用。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137