Statsmodels中Anderson-Darling正态性检验的正确使用方法
2025-05-22 06:10:24作者:房伟宁
背景介绍
Statsmodels是一个强大的Python统计建模库,提供了丰富的统计检验功能。其中Anderson-Darling检验是一种常用的正态性检验方法,用于评估样本数据是否来自正态分布。在最新版本的Statsmodels中,部分函数的导入路径发生了变化,导致一些用户在使用时遇到问题。
问题现象
用户在使用statsmodels.stats.diagnostic.normal_ad函数进行Anderson-Darling正态性检验时,报告了模块导入错误。具体表现为:
- 直接使用
statsmodels.stats.diagnostic.normal_ad会提示找不到stats模块 - 尝试从statsmodels导入stats后,仍然提示找不到diagnostic模块
解决方案
经过分析,正确的导入方式有以下几种:
方法一:直接导入diagnostic模块
from statsmodels.stats import diagnostic
result = diagnostic.normal_ad(data)
方法二:使用statsmodels.stats.api
from statsmodels.stats import api as smstats
result = smstats.normal_ad(data)
方法三:直接导入特定函数
from statsmodels.stats.diagnostic import normal_ad
result = normal_ad(data)
方法四:通过statsmodels.api导入
import statsmodels.api as sm
result = sm.stats.normal_ad(data)
技术细节
Anderson-Darling检验是正态性检验中较为严格的一种方法,它对分布的尾部变化特别敏感。在Statsmodels中实现时,该检验会返回两个值:
- 检验统计量
- 对应的p值
检验统计量越大,表明数据偏离正态分布的程度越大。p值小于显著性水平(通常为0.05)时,我们拒绝数据来自正态分布的原假设。
实际应用示例
import numpy as np
from statsmodels.stats import diagnostic
# 生成正态分布数据
normal_data = np.random.normal(0, 1, 1000)
# 生成非正态分布数据
non_normal_data = np.random.exponential(1, 1000)
# 对正态数据检验
result_normal = diagnostic.normal_ad(normal_data)
print("正态数据检验结果:", result_normal)
# 对非正态数据检验
result_non_normal = diagnostic.normal_ad(non_normal_data)
print("非正态数据检验结果:", result_non_normal)
注意事项
- 样本量较小时,正态性检验的功效可能不足
- 对于大样本数据,即使轻微偏离正态分布也可能被检测出来
- 在实际应用中,除了统计检验外,还应结合Q-Q图等图形方法综合判断
- 不同版本的Statsmodels可能会有不同的导入路径,建议查阅对应版本的文档
通过正确使用这些导入方法,用户可以顺利地在Python中进行Anderson-Darling正态性检验,为后续的统计分析奠定基础。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
345
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
888
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896