DynamiCrafter项目1024模型显存需求分析与优化方案
2025-06-28 10:57:21作者:江焘钦
项目背景
DynamiCrafter是一个基于深度学习的动态图像生成项目,其1024模型能够生成高质量的视频内容。然而,许多用户在尝试运行该模型时遇到了显存不足的问题,特别是在24G及以下显存的GPU设备上。
显存需求分析
根据用户反馈和开发者确认,原始1024模型对显存的需求较高:
- 完整模型在24G显存的GPU上运行时会出现显存不足(OOM)错误
- 即使减少video_length参数,仍无法避免OOM问题
- 错误信息显示模型尝试分配超过25GB的显存
解决方案
官方解决方案
项目开发者提供了以下优化方案:
- 使用最新版本的代码可以解决部分显存问题
- 对于Gradio本地演示版,更新代码后已确认可以成功推理
第三方优化方案
针对ComfyUI用户,社区开发者提供了优化版本:
- 精简版模型权重(pruned version)可将显存需求降至10GB左右
- 支持1024x576分辨率的图像动画生成
- 16G显存的GPU可以流畅运行
技术优化建议
对于仍遇到显存问题的用户,可以尝试以下技术方案:
- 安装xformers库,可显著减少注意力机制的内存占用
- 设置环境变量PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True,避免显存碎片化
- 使用低分辨率输入或缩短视频长度作为临时解决方案
性能对比
| 方案类型 | 显存需求 | 支持分辨率 | 适用GPU |
|---|---|---|---|
| 原始模型 | >24GB | 高分辨率 | 高端显卡 |
| 官方优化版 | 未明确 | 1024x576 | 24G+显卡 |
| 社区精简版 | ~10GB | 1024x576 | 16G显卡 |
实施建议
- 对于拥有高端显卡(24G+显存)的用户,建议直接使用官方最新代码
- 中等配置(16G显存)用户推荐使用社区提供的ComfyUI精简版
- 低配置用户可考虑进一步降低分辨率或使用xformers优化
未来展望
随着模型优化技术的进步,预计未来版本将进一步提高显存利用效率,使更多中等配置设备能够运行高质量的视频生成模型。开发者社区也在持续关注这一问题,并积极寻求更优的解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
93
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.33 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1