NeuralForecast中使用AutoTiDE模型时DataFrame格式问题的解决方案
2025-06-24 16:40:10作者:薛曦旖Francesca
问题背景
在使用NeuralForecast库中的AutoTiDE模型进行时间序列预测时,许多开发者会遇到一个常见的错误:"AttributeError: 'DataFrame' object has no attribute 'temporal_cols'"。这个问题通常发生在直接使用Pandas DataFrame作为输入数据时,而实际上NeuralForecast对数据格式有特定的要求。
错误原因分析
从错误信息可以看出,程序试图访问DataFrame的temporal_cols属性,但该属性并不存在。这是因为:
- NeuralForecast期望数据以特定的格式组织,而不是普通的Pandas DataFrame
- 直接使用DataFrame时,模型无法识别哪些列是时间特征、哪些是目标变量
- AutoTiDE等模型需要数据通过NeuralForecast的专用接口进行处理
正确使用方法
要正确使用AutoTiDE模型,需要遵循以下步骤:
- 数据准备:确保数据包含时间列(ds)和目标列(y)
- 模型初始化:创建AutoTiDE实例
- NeuralForecast包装:将模型包装在NeuralForecast实例中
- 模型训练:使用NeuralForecast的fit方法进行训练
代码示例
import numpy as np
import pandas as pd
from neuralforecast import NeuralForecast
from neuralforecast.auto import AutoTiDE
# 1. 准备数据
dataset = pd.read_csv('BTCUSDT_5m.csv')
dataset['ds'] = pd.to_datetime(dataset['timestamp'])
dataset['y'] = dataset['close'] # 假设我们预测收盘价
dataset = dataset[['ds', 'y']] # 至少需要这两列
# 2. 初始化模型
config = dict(max_steps=2, val_check_steps=1, input_size=12)
model = AutoTiDE(h=3, num_samples=10, cpus=1, config=config)
# 3. 创建NeuralForecast实例
nf = NeuralForecast(models=[model], freq='5min')
# 4. 训练模型
nf.fit(df=dataset)
# 5. 预测
y_hat = nf.predict()
关键注意事项
- 数据列名:必须包含'ds'(时间戳)和'y'(目标变量)列
- 频率设置:在NeuralForecast初始化时需要指定正确的频率(如'5min')
- 多变量支持:如果需要使用其他特征,可以保留在DataFrame中,但需要确保模型配置正确
- 数据清洗:确保没有缺失值,时间序列是连续的
高级用法
对于更复杂的场景,如使用外部变量:
# 包含外部变量的例子
dataset = dataset[['ds', 'y', 'open', 'high', 'low', 'volume']]
# 配置模型使用外部变量
model = AutoTiDE(h=3,
num_samples=10,
cpus=1,
config=config,
futr_exog_list=['open', 'high'], # 未来已知的外部变量
hist_exog_list=['volume'], # 历史外部变量
stat_exog_list=['low']) # 静态外部变量
nf = NeuralForecast(models=[model], freq='5min')
nf.fit(df=dataset)
总结
NeuralForecast库提供了强大的时间序列预测能力,但使用时需要注意其特定的数据格式要求。通过将模型包装在NeuralForecast实例中,并正确配置数据格式,可以避免"temporal_cols"属性错误,顺利实现时间序列预测任务。对于初学者来说,从简单的单变量预测开始,逐步扩展到多变量和复杂场景是一个推荐的学习路径。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
191
210
暂无简介
Dart
631
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
110
仓颉编译器源码及 cjdb 调试工具。
C++
128
858
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
211