Spark Expectations 使用指南
2024-09-26 23:20:42作者:裘旻烁
1. 目录结构及介绍
spark-expectations 是一个专为数据质量控制设计的Python库,在Spark作业运行过程中执行数据验证规则。以下是此开源项目的典型目录结构及其简要说明:
.
├── README.md # 项目介绍和快速入门指南
├── contrib # 贡献者相关文档或脚本
├── docs # 文档资料,包括API文档和用户指南
├── spark_expectations # 核心源码包,包含主要功能实现
│ ├── config # 配置相关代码,定义了全局配置变量和设置
│ ├── core # 核心逻辑,比如SparkExpectations类的实现
│ ├── expectations # 数据预期规则的具体实现
│ └── ...
├── tests # 单元测试和集成测试文件
├── gitignore # Git忽略文件配置
├── pre-commit-config.yaml # Pre-commit配置,用于代码风格检查
├── CODEOWNERS # 指定哪些人负责特定文件或目录的审查
├── CONTRIBUTING.md # 对于贡献者的指导文档
├── CONTRIBUTORS.md # 项目贡献者列表
├── LICENSE # 许可证文件,Apache-2.0 License
├── MANIFEST.in # 打包时包含的额外文件声明
├── Makefile # 构建自动化脚本
├── poetry.lock # 使用Poetry管理的依赖锁定文件
├── prospector.yaml # 代码质量分析工具Prospector的配置
├── pyproject.toml # 项目元数据和依赖声明(Poetry)
└── setup.py # 若有,则通常用于安装该库的传统方式(但未在给出的引用中显示)
2. 项目启动文件介绍
尽管直接的“启动文件”不是传统意义上的单一入口点,但在实际应用中,开发者应从创建SparkSession并初始化SparkExpectations对象开始。以下是一个简单的示例流程,展示如何“启动”使用此框架的过程:
-
创建SparkSession:
from pyspark.sql import SparkSession spark = SparkSession.builder.getOrCreate() -
实例化SparkExpectations: 在这个阶段,您会提供规则表、统计表等相关配置。
from spark_expectations.core.expectations import SparkExpectations se = SparkExpectations( product_id="example_product", rules_df=spark.table("dq_example_rules"), stats_table="dq_example_stats", stats_table_writer=..., target_and_error_table_writer=..., debugger=False, user_conf=... # 用户自定义配置 ) -
数据处理与验证: 应用装饰器
@se.with_expectations到处理数据的函数上,该函数返回要验证的数据集。
3. 项目的配置文件介绍
spark-expectations的配置通过代码直接设置,没有独立的配置文件。配置项通常是通过导入库中的配置模块,并在初始化SparkExpectations时或设置相应的环境变量来完成。例如,邮件通知和Slack通知的开启与配置是这样进行的:
from spark_expectations.config.user_config import Constants as user_config
se_user_conf = [
user_config.se_notifications_enable_email: False,
user_config.se_notifications_email_smtp_host: "mailhost.nike.com",
# 更多配置项...
]
开发者可以按需设定这些配置变量以定制其行为,如启用/禁用邮件通知、SMTP服务器设置、通知阈值等。对于更复杂的部署或者需要共享配置的情况,建议将配置项管理在统一的位置或环境变量中,以方便管理和更新。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
8
暂无简介
Dart
643
149
Ascend Extension for PyTorch
Python
203
219
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
282
React Native鸿蒙化仓库
JavaScript
248
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
631
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873