Spark Expectations 使用指南
2024-09-26 20:24:41作者:裘旻烁
1. 目录结构及介绍
spark-expectations
是一个专为数据质量控制设计的Python库,在Spark作业运行过程中执行数据验证规则。以下是此开源项目的典型目录结构及其简要说明:
.
├── README.md # 项目介绍和快速入门指南
├── contrib # 贡献者相关文档或脚本
├── docs # 文档资料,包括API文档和用户指南
├── spark_expectations # 核心源码包,包含主要功能实现
│ ├── config # 配置相关代码,定义了全局配置变量和设置
│ ├── core # 核心逻辑,比如SparkExpectations类的实现
│ ├── expectations # 数据预期规则的具体实现
│ └── ...
├── tests # 单元测试和集成测试文件
├── gitignore # Git忽略文件配置
├── pre-commit-config.yaml # Pre-commit配置,用于代码风格检查
├── CODEOWNERS # 指定哪些人负责特定文件或目录的审查
├── CONTRIBUTING.md # 对于贡献者的指导文档
├── CONTRIBUTORS.md # 项目贡献者列表
├── LICENSE # 许可证文件,Apache-2.0 License
├── MANIFEST.in # 打包时包含的额外文件声明
├── Makefile # 构建自动化脚本
├── poetry.lock # 使用Poetry管理的依赖锁定文件
├── prospector.yaml # 代码质量分析工具Prospector的配置
├── pyproject.toml # 项目元数据和依赖声明(Poetry)
└── setup.py # 若有,则通常用于安装该库的传统方式(但未在给出的引用中显示)
2. 项目启动文件介绍
尽管直接的“启动文件”不是传统意义上的单一入口点,但在实际应用中,开发者应从创建SparkSession并初始化SparkExpectations
对象开始。以下是一个简单的示例流程,展示如何“启动”使用此框架的过程:
-
创建SparkSession:
from pyspark.sql import SparkSession spark = SparkSession.builder.getOrCreate()
-
实例化SparkExpectations: 在这个阶段,您会提供规则表、统计表等相关配置。
from spark_expectations.core.expectations import SparkExpectations se = SparkExpectations( product_id="example_product", rules_df=spark.table("dq_example_rules"), stats_table="dq_example_stats", stats_table_writer=..., target_and_error_table_writer=..., debugger=False, user_conf=... # 用户自定义配置 )
-
数据处理与验证: 应用装饰器
@se.with_expectations
到处理数据的函数上,该函数返回要验证的数据集。
3. 项目的配置文件介绍
spark-expectations
的配置通过代码直接设置,没有独立的配置文件。配置项通常是通过导入库中的配置模块,并在初始化SparkExpectations
时或设置相应的环境变量来完成。例如,邮件通知和Slack通知的开启与配置是这样进行的:
from spark_expectations.config.user_config import Constants as user_config
se_user_conf = [
user_config.se_notifications_enable_email: False,
user_config.se_notifications_email_smtp_host: "mailhost.nike.com",
# 更多配置项...
]
开发者可以按需设定这些配置变量以定制其行为,如启用/禁用邮件通知、SMTP服务器设置、通知阈值等。对于更复杂的部署或者需要共享配置的情况,建议将配置项管理在统一的位置或环境变量中,以方便管理和更新。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~087CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp课程页面空白问题的技术分析与解决方案2 freeCodeCamp课程视频测验中的Tab键导航问题解析3 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析4 freeCodeCamp博客页面工作坊中的断言方法优化建议5 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析6 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析7 freeCodeCamp音乐播放器项目中的函数调用问题解析8 freeCodeCamp论坛排行榜项目中的错误日志规范要求9 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 10 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
884
524

openGauss kernel ~ openGauss is an open source relational database management system
C++
136
187

React Native鸿蒙化仓库
C++
182
264

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
364
381

deepin linux kernel
C
22
5

方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
113
45

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
84
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
831
23

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
736
105