使用Drogon框架实现MJPEG视频流传输服务
概述
在现代Web应用中,实时视频流传输是一个常见需求。本文将介绍如何使用高性能C++ Web框架Drogon实现MJPEG(Motion JPEG)视频流传输服务。MJPEG是一种简单的视频流技术,它通过连续传输JPEG图像帧来实现视频效果,特别适合在HTML img标签中直接显示。
MJPEG技术原理
MJPEG技术基于HTTP协议的多部分响应(multipart/x-mixed-replace)机制。服务器持续发送由边界分隔的JPEG图像帧,客户端(通常是浏览器)接收到新的帧后会替换当前显示的图像,从而实现视频播放效果。
Drogon实现方案
Drogon框架提供了AsyncStreamResponse类,专门用于处理异步数据流传输,非常适合实现MJPEG视频流。
核心实现代码
#include <drogon/drogon.h>
#include <opencv2/opencv.hpp>
using namespace drogon;
class MjpegStreamer : public HttpController<MjpegStreamer> {
public:
METHOD_LIST_BEGIN
ADD_METHOD_TO(MjpegStreamer::stream, "/streaming/jpeg/{name}", Get);
METHOD_LIST_END
void stream(const HttpRequestPtr& req,
std::function<void(const HttpResponsePtr&)>&& callback,
const std::string& name) {
// 创建异步流响应
auto resp = HttpResponse::newAsyncStreamResponse(
[name](const HttpRequestPtr& req,
std::function<void(const std::string&)>&& writeCallback,
std::function<void()>&& closeCallback) {
// 初始化视频源
auto videoSource = initializeVideoSource(name);
// 设置响应头
writeCallback("HTTP/1.1 200 OK\r\n");
writeCallback("Content-Type: multipart/x-mixed-replace; boundary=frame\r\n\r\n");
try {
while (true) {
auto frame = videoSource->getFrame();
if (!frame.empty()) {
std::vector<uchar> buffer;
cv::imencode(".jpg", frame, buffer);
// 发送帧数据
writeCallback("--frame\r\n");
writeCallback("Content-Type: image/jpeg\r\n\r\n");
writeCallback(std::string(buffer.begin(), buffer.end()));
writeCallback("\r\n");
}
// 控制帧率
std::this_thread::sleep_for(std::chrono::milliseconds(1000/30));
}
} catch (...) {
// 异常处理
closeCallback();
}
});
callback(resp);
}
};
关键点解析
-
异步流响应:
HttpResponse::newAsyncStreamResponse创建了一个可以持续写入数据的响应对象。 -
帧编码:使用OpenCV的
imencode函数将视频帧编码为JPEG格式。 -
MJPEG格式:每帧数据前添加MJPEG协议要求的边界标记和内容类型头。
-
帧率控制:通过
std::this_thread::sleep_for控制帧率,避免发送过快。
性能优化建议
-
连接管理:实现适当的连接断开检测,避免在客户端断开后继续发送数据。
-
资源清理:确保在流结束时正确释放视频源资源。
-
错误处理:添加完善的错误处理机制,包括视频源不可用、编码失败等情况。
-
帧缓存:对于多客户端场景,可以考虑实现帧缓存机制,避免重复编码。
前端使用示例
在前端HTML页面中,可以直接使用img标签显示MJPEG流:
<img src="/streaming/jpeg/camera1" alt="Live Stream">
总结
Drogon框架的异步流响应能力使其成为实现MJPEG视频流服务的理想选择。相比Python等脚本语言,C++实现提供了更高的性能和更低的资源占用,特别适合高并发视频流场景。通过合理设计,可以实现接近WebRTC的实时性能。
这种实现方式简单高效,不需要复杂的协议或额外的客户端库,兼容性良好,是许多监控系统、视频直播应用的理想解决方案。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00