使用Drogon框架实现MJPEG视频流传输服务
概述
在现代Web应用中,实时视频流传输是一个常见需求。本文将介绍如何使用高性能C++ Web框架Drogon实现MJPEG(Motion JPEG)视频流传输服务。MJPEG是一种简单的视频流技术,它通过连续传输JPEG图像帧来实现视频效果,特别适合在HTML img标签中直接显示。
MJPEG技术原理
MJPEG技术基于HTTP协议的多部分响应(multipart/x-mixed-replace)机制。服务器持续发送由边界分隔的JPEG图像帧,客户端(通常是浏览器)接收到新的帧后会替换当前显示的图像,从而实现视频播放效果。
Drogon实现方案
Drogon框架提供了AsyncStreamResponse类,专门用于处理异步数据流传输,非常适合实现MJPEG视频流。
核心实现代码
#include <drogon/drogon.h>
#include <opencv2/opencv.hpp>
using namespace drogon;
class MjpegStreamer : public HttpController<MjpegStreamer> {
public:
METHOD_LIST_BEGIN
ADD_METHOD_TO(MjpegStreamer::stream, "/streaming/jpeg/{name}", Get);
METHOD_LIST_END
void stream(const HttpRequestPtr& req,
std::function<void(const HttpResponsePtr&)>&& callback,
const std::string& name) {
// 创建异步流响应
auto resp = HttpResponse::newAsyncStreamResponse(
[name](const HttpRequestPtr& req,
std::function<void(const std::string&)>&& writeCallback,
std::function<void()>&& closeCallback) {
// 初始化视频源
auto videoSource = initializeVideoSource(name);
// 设置响应头
writeCallback("HTTP/1.1 200 OK\r\n");
writeCallback("Content-Type: multipart/x-mixed-replace; boundary=frame\r\n\r\n");
try {
while (true) {
auto frame = videoSource->getFrame();
if (!frame.empty()) {
std::vector<uchar> buffer;
cv::imencode(".jpg", frame, buffer);
// 发送帧数据
writeCallback("--frame\r\n");
writeCallback("Content-Type: image/jpeg\r\n\r\n");
writeCallback(std::string(buffer.begin(), buffer.end()));
writeCallback("\r\n");
}
// 控制帧率
std::this_thread::sleep_for(std::chrono::milliseconds(1000/30));
}
} catch (...) {
// 异常处理
closeCallback();
}
});
callback(resp);
}
};
关键点解析
-
异步流响应:
HttpResponse::newAsyncStreamResponse创建了一个可以持续写入数据的响应对象。 -
帧编码:使用OpenCV的
imencode函数将视频帧编码为JPEG格式。 -
MJPEG格式:每帧数据前添加MJPEG协议要求的边界标记和内容类型头。
-
帧率控制:通过
std::this_thread::sleep_for控制帧率,避免发送过快。
性能优化建议
-
连接管理:实现适当的连接断开检测,避免在客户端断开后继续发送数据。
-
资源清理:确保在流结束时正确释放视频源资源。
-
错误处理:添加完善的错误处理机制,包括视频源不可用、编码失败等情况。
-
帧缓存:对于多客户端场景,可以考虑实现帧缓存机制,避免重复编码。
前端使用示例
在前端HTML页面中,可以直接使用img标签显示MJPEG流:
<img src="/streaming/jpeg/camera1" alt="Live Stream">
总结
Drogon框架的异步流响应能力使其成为实现MJPEG视频流服务的理想选择。相比Python等脚本语言,C++实现提供了更高的性能和更低的资源占用,特别适合高并发视频流场景。通过合理设计,可以实现接近WebRTC的实时性能。
这种实现方式简单高效,不需要复杂的协议或额外的客户端库,兼容性良好,是许多监控系统、视频直播应用的理想解决方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00