ONNX模型优化:将卷积权重从Constant节点迁移到Initializer
2025-05-12 07:22:47作者:齐冠琰
背景介绍
在深度学习模型部署过程中,ONNX(Open Neural Network Exchange)格式已成为行业标准。ONNX模型使用图结构表示神经网络,其中包含两种主要的权重存储方式:Initializer(初始化器)和Constant(常量节点)。Initializer是ONNX推荐的标准方式,而Constant节点则会将权重作为计算图的一部分。
问题分析
在实际工作中,我们可能会遇到ONNX模型将卷积层权重存储在Constant节点而非Initializer中的情况。这种存储方式会导致模型图的initializer列表为空,可能影响后续的模型优化和部署流程。通过Netron可视化工具可以看到,这些权重确实存在于图中,但存储形式不符合最佳实践。
解决方案
我们可以使用ONNX Script库提供的IR(中间表示)接口来解决这个问题。具体步骤如下:
- 加载模型:使用ONNX Script的IR模块加载原始模型
- 识别卷积权重:遍历图中的Constant节点,识别出作为卷积权重的节点
- 创建Initializer:将这些Constant节点的张量值提取出来,创建对应的Initializer
- 替换引用:将图中所有对该Constant节点的引用替换为对新Initializer的引用
- 清理节点:安全地移除原始的Constant节点
- 保存模型:将优化后的模型保存到新文件
实现代码
from onnxscript import ir
from onnxscript.ir import convenience as ir_convenience
def convert_constants_to_initializers(model_path, output_path):
# 加载原始模型
model = ir.load(model_path)
def is_conv_weight(node):
# 检查节点输出是否被卷积层用作权重
uses = {(node.op_type, idx) for node, idx in node.outputs[0].uses()}
return ("Conv", 1) in uses
# 遍历图中的所有节点
for node in model.graph:
if node.op_type == "Constant" and is_conv_weight(node):
# 获取Constant节点的张量值
value = node.outputs[0]
tensor = node.attributes["value"].value
# 创建对应的Initializer
initializer_name = value.name
assert initializer_name
initializer = ir.Value(name=initializer_name, const_value=tensor)
model.graph.initializers[initializer_name] = initializer
# 替换所有引用
ir_convenience.replace_all_uses_with(value, initializer)
# 移除Constant节点
model.graph.remove(node, safe=True)
# 保存优化后的模型
ir.save(model, output_path)
技术细节
- 安全移除节点:使用
safe=True参数确保只有在节点输出不再被使用时才移除 - 引用替换:
replace_all_uses_with函数会自动更新图中所有对该值的引用 - Initializer存储:Initializer会被存储在模型的graph.initializers字典中,键为张量名称
应用场景
这种转换在以下场景特别有用:
- 准备模型进行量化时,需要所有权重都在Initializer中
- 优化模型图结构,减少不必要的计算节点
- 提高模型加载效率,Initializer比Constant节点更高效
- 统一模型格式,便于后续处理工具链兼容
注意事项
- 执行转换前建议备份原始模型
- 转换后应验证模型输出是否与原始模型一致
- 对于大型模型,此操作可能会消耗较多内存
- 确保ONNX Script版本与模型版本兼容
通过这种方法,我们可以有效地优化ONNX模型的结构,使其更符合最佳实践,为后续的部署和优化工作打下良好基础。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895