ONNX模型优化:将卷积权重从Constant节点迁移到Initializer
2025-05-12 16:20:57作者:齐冠琰
背景介绍
在深度学习模型部署过程中,ONNX(Open Neural Network Exchange)格式已成为行业标准。ONNX模型使用图结构表示神经网络,其中包含两种主要的权重存储方式:Initializer(初始化器)和Constant(常量节点)。Initializer是ONNX推荐的标准方式,而Constant节点则会将权重作为计算图的一部分。
问题分析
在实际工作中,我们可能会遇到ONNX模型将卷积层权重存储在Constant节点而非Initializer中的情况。这种存储方式会导致模型图的initializer列表为空,可能影响后续的模型优化和部署流程。通过Netron可视化工具可以看到,这些权重确实存在于图中,但存储形式不符合最佳实践。
解决方案
我们可以使用ONNX Script库提供的IR(中间表示)接口来解决这个问题。具体步骤如下:
- 加载模型:使用ONNX Script的IR模块加载原始模型
- 识别卷积权重:遍历图中的Constant节点,识别出作为卷积权重的节点
- 创建Initializer:将这些Constant节点的张量值提取出来,创建对应的Initializer
- 替换引用:将图中所有对该Constant节点的引用替换为对新Initializer的引用
- 清理节点:安全地移除原始的Constant节点
- 保存模型:将优化后的模型保存到新文件
实现代码
from onnxscript import ir
from onnxscript.ir import convenience as ir_convenience
def convert_constants_to_initializers(model_path, output_path):
# 加载原始模型
model = ir.load(model_path)
def is_conv_weight(node):
# 检查节点输出是否被卷积层用作权重
uses = {(node.op_type, idx) for node, idx in node.outputs[0].uses()}
return ("Conv", 1) in uses
# 遍历图中的所有节点
for node in model.graph:
if node.op_type == "Constant" and is_conv_weight(node):
# 获取Constant节点的张量值
value = node.outputs[0]
tensor = node.attributes["value"].value
# 创建对应的Initializer
initializer_name = value.name
assert initializer_name
initializer = ir.Value(name=initializer_name, const_value=tensor)
model.graph.initializers[initializer_name] = initializer
# 替换所有引用
ir_convenience.replace_all_uses_with(value, initializer)
# 移除Constant节点
model.graph.remove(node, safe=True)
# 保存优化后的模型
ir.save(model, output_path)
技术细节
- 安全移除节点:使用
safe=True参数确保只有在节点输出不再被使用时才移除 - 引用替换:
replace_all_uses_with函数会自动更新图中所有对该值的引用 - Initializer存储:Initializer会被存储在模型的graph.initializers字典中,键为张量名称
应用场景
这种转换在以下场景特别有用:
- 准备模型进行量化时,需要所有权重都在Initializer中
- 优化模型图结构,减少不必要的计算节点
- 提高模型加载效率,Initializer比Constant节点更高效
- 统一模型格式,便于后续处理工具链兼容
注意事项
- 执行转换前建议备份原始模型
- 转换后应验证模型输出是否与原始模型一致
- 对于大型模型,此操作可能会消耗较多内存
- 确保ONNX Script版本与模型版本兼容
通过这种方法,我们可以有效地优化ONNX模型的结构,使其更符合最佳实践,为后续的部署和优化工作打下良好基础。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
240
2.37 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
216
291
暂无简介
Dart
539
118
仓颉编译器源码及 cjdb 调试工具。
C++
115
86
仓颉编程语言运行时与标准库。
Cangjie
122
97
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
999
589
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
589
118
Ascend Extension for PyTorch
Python
78
111
仓颉编程语言提供了 stdx 模块,该模块提供了网络、安全等领域的通用能力。
Cangjie
80
56