GLM-4模型微调中的显存优化问题分析与解决方案
2025-06-03 23:16:40作者:曹令琨Iris
引言
在GLM-4-9B模型微调过程中,许多开发者遇到了显存管理方面的挑战,特别是当处理长文本数据时。本文将深入分析这些问题的根源,并提供切实可行的解决方案。
问题现象分析
在GLM-4-9B模型微调实践中,开发者报告了以下几种典型现象:
- 单卡训练显存接近耗尽:即使在H800 80GB显存的GPU上,单卡训练时显存占用率极高
- 多卡训练OOM问题:当使用双卡训练时,出现显存不足的错误
- 显存波动剧烈:训练过程中显存占用呈现周期性大幅波动,约30秒一个周期
根本原因剖析
数据处理机制
GLM-4的微调脚本在处理数据时,会将一个batch中的所有样本pad到该batch中最长样本的长度。这种处理方式在遇到长文本数据时会导致显存需求急剧增加。
训练配置因素
- 序列长度设置:max_input_length=3500和max_output_length=2500的设置对于9B参数的模型来说已经相当大
- 批处理大小:per_device_train_batch_size=1看似不大,但结合长序列长度后显存需求仍然很高
- 梯度累积:未设置梯度累积步数,导致每个step都需要计算和存储完整的梯度
硬件资源限制
虽然H800拥有80GB显存,但GLM-4-9B模型本身参数规模庞大,加上长序列处理的需求,显存资源很容易被耗尽。
解决方案与实践建议
数据处理优化
- 长度过滤:对训练数据进行筛选,移除过长的样本
- 分桶处理:将长度相近的样本分组处理,减少padding带来的显存浪费
- 动态截断:实现动态截断策略,而非简单的全局截断
训练配置调整
- 降低序列长度:适当减小max_input_length和max_output_length
- 启用梯度检查点:在代码中添加model.gradient_checkpointing_enable()
- 调整批处理参数:
- 设置合理的gradient_accumulation_steps
- 减小per_device_train_batch_size
技术方案升级
- Flash Attention支持:虽然模型代码中已包含相关实现,但需要手动修改modeling_chatglm文件来启用
- 混合精度训练:利用AMP(自动混合精度)减少显存占用
- 优化器选择:使用内存效率更高的优化器如Adafactor
分布式训练优化
- DeepSpeed配置:确保使用正确的Zero-3配置
- 数据并行策略:优化数据在多个GPU间的分配方式
- 流水线并行:对于极长序列,考虑引入流水线并行
最佳实践建议
- 监控显存使用:在训练过程中密切监控显存使用情况
- 逐步增加复杂度:从短序列、小batch开始,逐步增加
- 环境一致性:确保依赖库版本与官方推荐一致
- 资源隔离:避免其他进程抢占显存资源
结论
GLM-4-9B模型的微调确实面临显存管理的挑战,特别是处理长文本数据时。通过合理的数据处理、训练配置优化和技术方案升级,可以有效地解决这些问题。开发者应根据自身硬件条件和任务需求,选择最适合的优化组合方案。
记住,模型微调是一个需要反复试验和调优的过程,耐心和系统的方法论是成功的关键。希望本文的分析和建议能帮助开发者更顺利地进行GLM-4模型的微调工作。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355