GLM-4模型微调中的显存优化问题分析与解决方案
2025-06-03 21:36:43作者:曹令琨Iris
引言
在GLM-4-9B模型微调过程中,许多开发者遇到了显存管理方面的挑战,特别是当处理长文本数据时。本文将深入分析这些问题的根源,并提供切实可行的解决方案。
问题现象分析
在GLM-4-9B模型微调实践中,开发者报告了以下几种典型现象:
- 单卡训练显存接近耗尽:即使在H800 80GB显存的GPU上,单卡训练时显存占用率极高
- 多卡训练OOM问题:当使用双卡训练时,出现显存不足的错误
- 显存波动剧烈:训练过程中显存占用呈现周期性大幅波动,约30秒一个周期
根本原因剖析
数据处理机制
GLM-4的微调脚本在处理数据时,会将一个batch中的所有样本pad到该batch中最长样本的长度。这种处理方式在遇到长文本数据时会导致显存需求急剧增加。
训练配置因素
- 序列长度设置:max_input_length=3500和max_output_length=2500的设置对于9B参数的模型来说已经相当大
- 批处理大小:per_device_train_batch_size=1看似不大,但结合长序列长度后显存需求仍然很高
- 梯度累积:未设置梯度累积步数,导致每个step都需要计算和存储完整的梯度
硬件资源限制
虽然H800拥有80GB显存,但GLM-4-9B模型本身参数规模庞大,加上长序列处理的需求,显存资源很容易被耗尽。
解决方案与实践建议
数据处理优化
- 长度过滤:对训练数据进行筛选,移除过长的样本
- 分桶处理:将长度相近的样本分组处理,减少padding带来的显存浪费
- 动态截断:实现动态截断策略,而非简单的全局截断
训练配置调整
- 降低序列长度:适当减小max_input_length和max_output_length
- 启用梯度检查点:在代码中添加model.gradient_checkpointing_enable()
- 调整批处理参数:
- 设置合理的gradient_accumulation_steps
- 减小per_device_train_batch_size
技术方案升级
- Flash Attention支持:虽然模型代码中已包含相关实现,但需要手动修改modeling_chatglm文件来启用
- 混合精度训练:利用AMP(自动混合精度)减少显存占用
- 优化器选择:使用内存效率更高的优化器如Adafactor
分布式训练优化
- DeepSpeed配置:确保使用正确的Zero-3配置
- 数据并行策略:优化数据在多个GPU间的分配方式
- 流水线并行:对于极长序列,考虑引入流水线并行
最佳实践建议
- 监控显存使用:在训练过程中密切监控显存使用情况
- 逐步增加复杂度:从短序列、小batch开始,逐步增加
- 环境一致性:确保依赖库版本与官方推荐一致
- 资源隔离:避免其他进程抢占显存资源
结论
GLM-4-9B模型的微调确实面临显存管理的挑战,特别是处理长文本数据时。通过合理的数据处理、训练配置优化和技术方案升级,可以有效地解决这些问题。开发者应根据自身硬件条件和任务需求,选择最适合的优化组合方案。
记住,模型微调是一个需要反复试验和调优的过程,耐心和系统的方法论是成功的关键。希望本文的分析和建议能帮助开发者更顺利地进行GLM-4模型的微调工作。
登录后查看全文
热门项目推荐
相关项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8