SkyThought项目在A100显卡上训练长上下文模型的内存优化方案
2025-06-25 15:06:41作者:咎竹峻Karen
背景介绍
SkyThought-preview是一个基于Qwen2.5-32B模型的开源项目,该项目在训练过程中支持超长上下文(最高16384 tokens)。然而,当使用8块A100(80GB)显卡进行训练时,用户遇到了内存不足(OOM)的问题,而将上下文长度降至8192后问题消失。
问题分析
在深度学习模型训练中,内存消耗主要来自以下几个方面:
- 模型参数存储:Qwen2.5-32B作为大型语言模型,本身参数规模庞大
- 激活值存储:随着上下文长度的增加,中间激活值的内存占用呈平方级增长
- 优化器状态:特别是使用Adam等复杂优化器时,需要存储额外的参数状态
- 梯度存储:反向传播过程中需要保存的梯度信息
虽然A100和H100同为80GB显存,但H100采用了更先进的架构设计,在内存带宽和计算效率上有显著提升,这使得H100能够处理更大的batch size和更长的序列长度。
解决方案
针对A100显卡训练长上下文模型的优化方案:
1. 启用Liger内核优化
在DeepSpeed配置中设置enable_liger_kernel: true可以显著减少内存占用。Liger内核是专门为大型语言模型优化的计算内核,通过以下方式降低内存消耗:
- 更高效的内存访问模式
- 优化的算子融合策略
- 减少中间结果的存储
2. 梯度检查点技术
实现梯度检查点(Gradient Checkpointing)可以大幅减少激活值的内存占用。这项技术通过在前向传播过程中只保存部分关键节点的激活值,在反向传播时重新计算中间结果,以计算时间换取内存空间。
3. 优化DeepSpeed配置
调整DeepSpeed的ZeRO优化阶段:
- ZeRO-1:仅优化器状态分区
- ZeRO-2:优化器状态+梯度分区
- ZeRO-3:优化器状态+梯度+参数分区
对于A100显卡,建议从ZeRO-2开始尝试,如果仍遇到内存问题,再考虑ZeRO-3。
4. 混合精度训练
使用混合精度训练可以:
- 将部分计算转换为FP16,减少显存占用
- 利用Tensor Core加速计算
- 保持关键部分为FP32以确保数值稳定性
5. 序列并行化
对于超长序列处理,可以考虑序列并行(Sequence Parallelism)技术,将长序列分割到不同设备上处理,特别适合处理16384 tokens这样的长上下文场景。
实施建议
- 首先尝试最简单的解决方案:启用Liger内核
- 如果仍不足,逐步增加梯度检查点和ZeRO优化
- 对于极端情况,考虑组合使用所有优化技术
- 监控GPU内存使用情况,找到最适合的配置组合
通过合理配置这些优化技术,在8块A100(80GB)上训练Qwen2.5-32B模型并支持16384 tokens的上下文长度是完全可行的。关键在于找到适合特定硬件配置的最佳优化组合。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
667
153
Ascend Extension for PyTorch
Python
216
235
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
303
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
255
321
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
63
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
651
仓颉编程语言运行时与标准库。
Cangjie
141
876
仓颉编译器源码及 cjdb 调试工具。
C++
133
866