SkyThought项目在A100显卡上训练长上下文模型的内存优化方案
2025-06-25 19:03:25作者:咎竹峻Karen
背景介绍
SkyThought-preview是一个基于Qwen2.5-32B模型的开源项目,该项目在训练过程中支持超长上下文(最高16384 tokens)。然而,当使用8块A100(80GB)显卡进行训练时,用户遇到了内存不足(OOM)的问题,而将上下文长度降至8192后问题消失。
问题分析
在深度学习模型训练中,内存消耗主要来自以下几个方面:
- 模型参数存储:Qwen2.5-32B作为大型语言模型,本身参数规模庞大
- 激活值存储:随着上下文长度的增加,中间激活值的内存占用呈平方级增长
- 优化器状态:特别是使用Adam等复杂优化器时,需要存储额外的参数状态
- 梯度存储:反向传播过程中需要保存的梯度信息
虽然A100和H100同为80GB显存,但H100采用了更先进的架构设计,在内存带宽和计算效率上有显著提升,这使得H100能够处理更大的batch size和更长的序列长度。
解决方案
针对A100显卡训练长上下文模型的优化方案:
1. 启用Liger内核优化
在DeepSpeed配置中设置enable_liger_kernel: true
可以显著减少内存占用。Liger内核是专门为大型语言模型优化的计算内核,通过以下方式降低内存消耗:
- 更高效的内存访问模式
- 优化的算子融合策略
- 减少中间结果的存储
2. 梯度检查点技术
实现梯度检查点(Gradient Checkpointing)可以大幅减少激活值的内存占用。这项技术通过在前向传播过程中只保存部分关键节点的激活值,在反向传播时重新计算中间结果,以计算时间换取内存空间。
3. 优化DeepSpeed配置
调整DeepSpeed的ZeRO优化阶段:
- ZeRO-1:仅优化器状态分区
- ZeRO-2:优化器状态+梯度分区
- ZeRO-3:优化器状态+梯度+参数分区
对于A100显卡,建议从ZeRO-2开始尝试,如果仍遇到内存问题,再考虑ZeRO-3。
4. 混合精度训练
使用混合精度训练可以:
- 将部分计算转换为FP16,减少显存占用
- 利用Tensor Core加速计算
- 保持关键部分为FP32以确保数值稳定性
5. 序列并行化
对于超长序列处理,可以考虑序列并行(Sequence Parallelism)技术,将长序列分割到不同设备上处理,特别适合处理16384 tokens这样的长上下文场景。
实施建议
- 首先尝试最简单的解决方案:启用Liger内核
- 如果仍不足,逐步增加梯度检查点和ZeRO优化
- 对于极端情况,考虑组合使用所有优化技术
- 监控GPU内存使用情况,找到最适合的配置组合
通过合理配置这些优化技术,在8块A100(80GB)上训练Qwen2.5-32B模型并支持16384 tokens的上下文长度是完全可行的。关键在于找到适合特定硬件配置的最佳优化组合。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
52
461

deepin linux kernel
C
22
5

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

openGauss kernel ~ openGauss is an open source relational database management system
C++
131
185

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
873
517

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.09 K

React Native鸿蒙化仓库
C++
179
264

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
608
59

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4