Box64 v0.3.4版本发布:跨平台x86_64模拟器迎来重大性能与兼容性升级
Box64是一款创新的动态二进制翻译工具,它允许x86_64架构的应用程序在非x86平台上运行,包括ARM64、RISC-V 64和LoongArch 64等架构。最新发布的v0.3.4版本带来了显著的性能提升和兼容性改进,特别是在RISC-V和ARM平台上的表现尤为突出。
核心架构优化
本次更新对RV64后端进行了深度优化,显著提升了执行效率。通过充分利用RVV 1.0和xThreadVector扩展指令集,现在能够更高效地模拟SSE/SSE2+指令集(虽然AVX支持尚未实现)。这种硬件加速的向量运算模拟大幅提升了多媒体应用的运行效率。
ARM64平台同样获得了重要改进,特别是在DRM(数字版权管理)支持方面。现在更多类型的DRM保护内容可以在ARM设备上顺利运行,为游戏和媒体应用打开了更广阔的可能性。
突破性功能:Windows系统调用模拟
v0.3.4版本引入了一项突破性功能——Windows系统调用模拟。这项功能需要配合Proton使用,并且目前要求48位地址空间支持。它为在Linux平台上运行Windows应用程序提供了更底层的支持,是兼容性方面的重要里程碑。
性能优化与调试增强
开发团队引入了多项性能优化措施,包括:
- BOX64_DYNAREC_DIRTY选项:提供了一种更快速(但安全性稍低)的方式来处理自修改代码
- 实验性GDBJIT支持:允许在ARM/RV64/LA64平台上以x86寄存器和指令视角调试程序
- Perf工具集成:提供了x86指令级别的性能分析能力
- CPUID处理重构:新增BOX64_CPUTYPE支持,可以选择模拟Intel或AMD处理器特性
动态二进制翻译改进
所有支持的架构后端(ARM64、RV64、LA64)都获得了大量改进:
- 标志位处理更加精确,更接近真实x86 CPU行为
- 新增对许多罕见指令的支持
- 内存跟踪和文件描述符支持的内存映射得到改进
- 针对REP MOVSB指令的优化实现
- RV64平台利用硬件扩展(如AES)提升加密操作性能
- LA64平台增加了对ABI 1.0的有限支持
Box32兼容性提升
Box64内置的32位兼容层Box32也获得了显著改进:
- 现在可以在ARM64后端上运行Steam客户端(RV64和LA64平台暂不支持)
- 大量pthreads相关问题的修复
- 更多函数和库的包装支持
- 高内存(超过32位)处理机制的改进
开发者工具与诊断增强
新版本在开发者体验方面也有重要提升:
- 跟踪日志系统重构,每条日志都带有可选颜色的BOX32或BOX64前缀
- 协仿真(cosim)系统改进,减少误报
- 运行时消息更加规范化
- 新增自动生成的USAGE.md和box64.pod文档
游戏兼容性优化
通过大量的游戏配置文件(RCFile)更新,许多游戏的运行速度和兼容性都得到了针对性优化。开发团队为多款热门游戏添加了专门的优化配置,包括但不限于《Sekiro》等。
构建与分发改进
CI系统现在不仅生成常规Linux构建,还会创建MiceWine的.rat存档和Winlator的.wcp存档,方便不同平台的用户使用。同时修复了多种构建环境下的问题,提高了跨平台构建的可靠性。
Box64 v0.3.4版本标志着这个项目在性能和兼容性方面又向前迈进了一大步。特别是对RISC-V和LoongArch架构的深度优化,为这些新兴平台运行x86_64应用提供了更强大的支持。Windows系统调用模拟的引入则为Wine/Proton的兼容性打下了更坚实的基础,展现了Box64在跨平台兼容性解决方案中的重要地位。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00