Garak项目中如何通过YAML配置自定义REST API模板
2025-06-14 05:59:22作者:尤辰城Agatha
在人工智能应用开发过程中,与大型语言模型(LLM)的交互通常通过REST API实现。Garak作为一个灵活的AI安全评估框架,提供了强大的配置能力来支持各种REST API调用方式。本文将详细介绍如何在Garak项目中通过YAML配置文件自定义REST API请求模板。
REST API模板配置基础
Garak框架通过内置的RestGenerator组件处理REST API调用。配置的核心在于定义请求模板,该模板会被序列化为JSON格式发送给API端点。配置系统支持JSON和YAML两种格式,通过标准库进行解析,支持基本数据类型、字典和列表等结构。
典型配置示例
以下是一个完整的REST API配置示例,展示了如何定义请求模板:
plugins:
generators:
rest:
RestGenerator:
name: 示例服务
uri: https://example.ai/llm
method: post
headers:
X-Authorization: "$KEY"
req_template_json_object:
messages:
- role: system
content: 你是一个乐于助人的助手。
- role: user
content: "$INPUT"
response_json: true
response_json_field: text
关键配置项解析
-
基础连接配置:
uri: 指定API端点URLmethod: 定义HTTP方法(如post)headers: 设置请求头,支持变量替换
-
请求模板配置:
req_template_json_object: 定义请求体结构$INPUT: 特殊占位符,会被实际探测文本替换- 支持多轮对话结构(message数组)
-
响应处理配置:
response_json: 标识响应是否为JSON格式response_json_field: 指定从响应中提取文本的字段
配置技巧与最佳实践
-
变量替换机制:除了
$INPUT外,还可以使用$KEY等占位符,这些会在运行时被实际值替换。 -
复杂模板结构:可以构建包含系统提示、用户输入和历史对话的复杂模板结构,满足不同LLM的输入要求。
-
格式转换:当需要从JSON转换为YAML时,注意保持数据结构的一致性,特别是列表和字典的嵌套关系。
-
错误处理:确保模板中的字段名与API文档完全一致,避免因字段名错误导致的请求失败。
实际应用场景
这种配置方式特别适用于:
- 对接私有化部署的LLM服务
- 需要特殊请求格式的商业API
- 多轮对话场景的系统提示配置
- 需要添加自定义请求头的认证场景
通过灵活的YAML配置,开发者可以快速适配各种REST API规范,而无需修改Garak的核心代码,大大提高了框架的适应性和可扩展性。
掌握这些配置技巧后,开发者可以轻松地将Garak框架与各种LLM服务集成,进行安全评估和性能测试。这种配置方式不仅简化了集成过程,还为不同API规范提供了统一的测试接口。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355