探索未来的利器:开源Vizier — 可靠而灵活的黑盒优化框架
2024-05-22 14:05:38作者:曹令琨Iris
在机器学习和人工智能领域,优化工作是至关重要的一步,尤其是对那些复杂的黑盒优化问题。这就是Vizier,一个由Google研发,并已开源的黑盒优化服务,它以强大的性能和易用性著称。现在,让我们一起深入了解这个Python实现的开源版Vizier。
1、项目介绍
开源Vizier(OSS Vizier)是一个基于Python的服务,用于黑盒优化和研究。它的设计灵感来源于Google的内部工具Vizier,它旨在处理大规模的超参数调优任务。OSS Vizier提供了分布式客户端-服务器系统,确保在优化过程中可靠且灵活。
2、项目技术分析
OSS Vizier的核心是一个名为GAUSSIAN_PROCESS_BANDIT
的算法,支持多种搜索空间类型,包括浮点型、整型、离散型和分类型参数。其API分为三大部分:
- 用户API:供研究人员使用,可以轻松地优化目标函数并设置分布式多客户端环境。
- 开发者API:为算法开发人员提供抽象和工具,以便于创建新的优化算法进行研究和服务部署。
- 基准测试API:包含了大量基准测试用例,可用于比较和评估不同优化算法的性能。
此外,OSS Vizier还支持TensorFlow Probability和Flax,以及PyGlove库,以实现更大规模的进化实验和程序搜索。
3、项目及技术应用场景
无论你是机器学习工程师还是数据科学家,以下场景都可以受益于OSS Vizier:
- 超参数调优:自动调整模型的参数以提高性能。
- 研究新算法:利用现成的基础设施快速验证和比较新的优化策略。
- 大规模实验:分布式架构使执行大量并发实验成为可能。
- 自动化工程:在软件配置或硬件配置中寻找最佳组合。
4、项目特点
- 可靠性与灵活性:OSS Vizier采用分布式系统,保证了在大规模实验中的稳定性和可扩展性。
- 全面的API:覆盖从基础调优到算法开发再到基准测试的各种需求。
- 集成社区资源:兼容TensorFlow、JAX等流行库,以及NASBENCH-201等基准测试集。
- 易于使用:通过简单的Python代码即可启动优化过程,如上面的基本示例所示。
引用OSS Vizier
如果你在研究或项目中使用了OSS Vizier,请考虑引用以下两篇论文:
@inproceedings{oss_vizier,
author = {Xingyou Song and
Sagi Perel and
Chansoo Lee and
Greg Kochanski and
Daniel Golovin},
title = {Open Source Vizier: Distributed Infrastructure and API for Reliable and Flexible Black-box Optimization},
booktitle = {Automated Machine Learning Conference, Systems Track (AutoML-Conf Systems)},
year = {2022},
}
@inproceedings{google_vizier,
author = {Daniel Golovin and
Benjamin Solnik and
Subhodeep Moitra and
Greg Kochanski and
John Karro and
D. Sculley},
title = {Google Vizier: {A} Service for Black-Box Optimization},
booktitle = {Proceedings of the 23rd {ACM} {SIGKDD} International Conference on
Knowledge Discovery and Data Mining, Halifax, NS, Canada, August 13
- 17, 2017},
pages = {1487--1495},
publisher = {{ACM}},
year = {2017},
url = {https://doi.org/10.1145/3097983.3098043},
doi = {10.1145/3097983.3098043},
}
加入OSS Vizier的行列,让优化变得简单而高效,释放你的AI潜能。现在就尝试安装,开启你的优化之旅吧!
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
295
331

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
18
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58