Typesense地理搜索中sort_by与precision参数的距离计算问题解析
概述
在使用Typesense进行地理空间搜索时,开发者发现当在sort_by排序参数中使用precision精度参数时,返回结果中的geo_distance_meters距离值会出现异常。本文将深入分析这一问题的技术背景、产生原因以及解决方案。
问题现象
当使用如下排序参数时:
'sort_by': f"_text_match(buckets: 5):desc, location({lat}, {lon}, precision: 2mi):asc"
返回结果中的距离值会被近似处理,例如所有结果的距离都显示为3218米这样的相同值,而实际距离可能是52米、143米等不同数值。
相比之下,不使用precision参数的查询:
'sort_by': f"_text_match(buckets: 5):desc, location({lat}, {lon}):asc"
则能返回精确的实际距离值。
技术背景
Typesense的地理搜索功能基于geohash算法实现。当指定precision参数时,系统会对地理坐标进行网格化处理,将相近的点归入同一个网格单元。这种设计原本是为了提高查询性能,通过牺牲一定的精度来换取更快的搜索速度。
precision参数的单位可以是米(m)、千米(km)或英里(mi),它决定了网格单元的大小。较小的precision值意味着更精细的网格划分,但会降低查询性能;较大的precision值则相反。
问题根源
问题的本质在于,当启用precision参数时,Typesense在计算和返回距离时,使用了网格中心点而非实际坐标点的距离。这导致了两个问题:
- 所有落在同一个网格内的点会被赋予相同的距离值
- 返回的距离是到网格中心点的距离,而非到实际坐标点的精确距离
例如,当precision设为2英里(约3218米)时:
- 实际距离为52米和143米的两个点可能落在同一个网格内
- 系统会返回它们到网格中心点的距离,可能都是3218米
解决方案
Typesense团队在0.27.0.rc24版本中修复了这一问题。新版本中,无论是否使用precision参数,系统都会返回基于实际坐标点的精确距离值。
对于开发者而言,升级到0.27.0.rc24或更高版本即可解决此问题。如果暂时无法升级,可以考虑以下替代方案:
- 不使用precision参数,接受可能的性能损失
- 在应用层自行计算精确距离(需注意这会增加额外的计算开销)
最佳实践
在使用地理搜索功能时,建议:
- 根据实际需求平衡精度与性能
- 对于需要精确距离的场景,优先考虑不使用precision参数
- 定期更新Typesense版本以获取最新的功能改进和错误修复
通过理解这一问题的技术背景和解决方案,开发者可以更有效地利用Typesense的地理搜索功能,构建更精确、更高效的地理空间应用。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00