ONNXRuntime在Jetson Orin Nano上的CUDA执行性能优化分析
在Jetson Orin Nano开发套件(JetPack 6.1)上使用ONNXRuntime v1.20.1时,开发者遇到了一个值得关注的性能问题:当使用CUDA执行提供程序(EP)时,模型推理速度比直接使用TensorRT慢了7-8倍。通过NSight工具分析发现,核心问题在于CUDA执行提供程序未能有效利用Orin Nano的Tensor Core计算单元。
问题现象
开发者构建了一个相对简单的UNet模型,在Jetson Orin Nano上运行时观察到:
- 使用ONNXRuntime CUDA EP时性能显著下降
- NSight分析显示Tensor Core未被激活
- 相同模型在TensorRT环境下能正常使用Tensor Core
- 该问题在Jetson AGX Orin(JetPack 5.1)上未出现
根本原因分析
经过技术验证,发现问题的根源在于CUDA执行提供程序的配置参数。具体来说,当设置了cudnn_conv_algo_search = OrtCudnnConvAlgoSearchDefault参数时,会导致cuDNN使用默认的卷积算法搜索策略,而这种策略在某些情况下不会选择使用Tensor Core的优化算法。
解决方案
针对这一问题,有以下几种有效的解决方法:
-
移除特定配置参数
最简单直接的解决方案是移除cudnn_conv_algo_search的显式设置,让系统使用默认的EXHAUSTIVE搜索策略,这种策略会尝试所有可能的算法,包括使用Tensor Core的优化算法。 -
构建参数优化
在构建ONNXRuntime时,添加CMAKE_CUDA_ARCHITECTURES=native参数可以确保编译器针对目标设备的特定架构生成最优化的代码。 -
模型精度选择
考虑使用FP16精度的模型,因为Tensor Core对半精度计算有更好的支持,能带来更显著的性能提升。
深入技术细节
Tensor Core是NVIDIA GPU中的专用计算单元,专门为矩阵运算优化,能显著提升深度学习工作负载的性能。在Jetson Orin系列设备上,Tensor Core的性能优势尤为明显。当这些专用计算单元未被充分利用时,性能差距可以达到一个数量级。
cuDNN提供了多种卷积算法搜索策略:
- DEFAULT:快速但不一定最优
- EXHAUSTIVE:尝试所有可能算法,包括使用Tensor Core的优化算法
- HEURISTIC:基于启发式方法选择算法
在大多数情况下,EXHAUSTIVE策略虽然会增加初始化的时间,但能确保选择最优的算法,特别是对于需要长期运行的模型推理任务来说,这种前期投入是值得的。
最佳实践建议
对于Jetson平台上的ONNXRuntime部署,建议开发者:
- 仔细评估CUDA执行提供程序的配置参数
- 在性能关键应用中避免使用DEFAULT搜索策略
- 考虑模型量化(如FP16)以充分利用硬件加速
- 使用NSight等工具验证Tensor Core的使用情况
- 针对特定Jetson设备进行构建优化
通过以上优化措施,开发者可以充分发挥Jetson Orin Nano硬件潜力,获得与TensorRT相当甚至更好的推理性能。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00