在离线环境中运行lm-evaluation-harness的技术指南
2025-05-26 05:11:39作者:秋泉律Samson
背景介绍
lm-evaluation-harness是一个流行的语言模型评估框架,由EleutherAI开发。在实际应用中,我们经常需要在离线环境中运行评估任务,例如在Docker容器内或受限制的网络环境中。本文将详细介绍如何配置lm-evaluation-harness以支持完全离线运行。
核心问题分析
当在无网络连接的环境中运行lm-evaluation-harness时,主要会遇到两类问题:
- 数据集下载问题:框架默认会尝试从Hugging Face Hub下载所需的数据集
- 模型加载问题:对于Hugging Face模型,同样需要网络连接来下载模型权重
解决方案详解
1. 设置离线模式环境变量
通过设置以下环境变量,可以强制Hugging Face库工作在离线模式:
export HF_DATASETS_OFFLINE="1"
export HF_HOME="/path/to/cache"
其中:
HF_DATASETS_OFFLINE=1告诉Hugging Face数据集库不要尝试连接网络HF_HOME指定了预下载资源的缓存位置
2. 预下载所需资源
在离线运行前,需要在有网络的环境中预先下载所有必需的资源:
数据集预下载
from datasets import load_dataset
# 下载所有需要的数据集
datasets_to_download = ["mnli", "qnli", "rte", "coqa", "record",
"drop", "copa", "wsc", "multirc", "mathqa", "logiqa"]
for dataset_name in datasets_to_download:
load_dataset(dataset_name)
模型预下载
from transformers import AutoModel, AutoTokenizer
model_name = "your-model-name"
model = AutoModel.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
3. 目录结构准备
确保缓存目录包含以下内容:
/path/to/cache/
├── datasets/ # 数据集缓存
├── models/ # 模型缓存
└── modules/ # 其他模块缓存
4. 运行评估命令
在离线环境中运行时,确保指定正确的缓存路径和本地模型路径:
lm_eval \
--model hf \
--model_args pretrained=/path/to/local/model \
--tasks mnli,qnli,rte \
--device cpu \
--batch_size 2 \
--output_path ./results
常见问题排查
进行完整测试运行
- 缓存管理:定期清理不再使用的
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355