Jsoup项目中StreamParser处理HTML显式闭合标签的重复解析问题分析
问题背景
在Jsoup 1.19.1版本中,开发人员发现当使用StreamParser结合Jsoup.parse()方法处理HTML文档时,如果文档中包含显式闭合标签,会导致某些元素的属性和内容被重复输出。这个问题在流式解析HTML文档时尤为明显,影响了数据处理的准确性。
问题现象
当解析一个包含显式闭合标签的HTML文档时,例如:
<html><head><title>Stream</title></head><body><a href=foo>Link</a></body></html>
使用StreamParser进行流式解析后,输出的元素会出现重复,特别是<a>和<body>标签会被处理两次:
El: <title>; attributes: ; ownText: Stream
El: <head>; attributes: ; ownText:
El: <a>; attributes: href="foo"; ownText: Link
El: <body>; attributes: ; ownText:
El: <a>; attributes: href="foo"; ownText: Link
El: <body>; attributes: ; ownText:
El: <html>; attributes: ; ownText:
El: <#root>; attributes: ; ownText:
问题根源
经过分析,这个问题源于HTML解析器的特殊处理机制:
-
HTML解析器的栈管理:HTML解析器会保持
body和html标签在栈中,即使它们已经被显式闭合。这是为了确保后续内容仍然能够被正确添加到body中。 -
双重触发机制:当标签显式闭合时,
onNodeRemoved事件会被触发一次;当文档解析完成时,所有剩余的节点会从栈中弹出,导致这些标签再次被处理。 -
与XML解析器的差异:值得注意的是,这个问题只出现在HTML解析器中,XML解析器表现正常,因为它不会保持已闭合标签在栈中。
解决方案
Jsoup开发团队已经修复了这个问题,修复后的版本能够正确处理显式闭合标签,输出符合预期的结果:
El: <title>; attributes: ; ownText: Stream
El: <head>; attributes: ; ownText:
El: <a>; attributes: href="foo"; ownText: Link
El: <body>; attributes: ; ownText:
El: <html>; attributes: ; ownText:
El: <#root>; attributes: ; ownText:
技术启示
这个问题给我们带来了一些重要的技术启示:
-
流式解析的特殊性:流式解析与传统的DOM构建解析有着不同的处理机制,需要特别注意节点生命周期管理。
-
HTML与XML解析差异:HTML解析器为了容错性会做出一些特殊处理,这在设计解析逻辑时需要特别注意。
-
显式与隐式闭合:在HTML中,显式闭合标签和隐式闭合标签可能会导致不同的解析行为,这在处理流式数据时需要格外小心。
最佳实践建议
基于这个问题的分析,建议开发人员在使用Jsoup的StreamParser时:
- 明确了解HTML和XML解析器的行为差异
- 对于需要精确控制解析结果的场景,考虑使用XML解析模式
- 及时更新到修复后的Jsoup版本
- 在流式处理中,注意检查元素的唯一性,避免重复处理
这个问题展示了HTML解析器复杂性的一个侧面,也提醒我们在使用高级解析功能时需要深入理解其内部机制。Jsoup团队的快速响应和修复也体现了开源项目的优势所在。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00