KG-RAG 项目安装和配置指南
2026-01-20 01:19:58作者:曹令琨Iris
1. 项目基础介绍和主要编程语言
项目基础介绍
KG-RAG(Knowledge Graph-based Retrieval Augmented Generation)是一个任务无关的框架,旨在结合知识图谱(Knowledge Graph, KG)的显式知识和大型语言模型(Large Language Model, LLM)的隐式知识,用于知识密集型任务。该项目主要应用于生物医学领域,利用大规模的生物医学知识图谱SPOKE(包含超过2700万个节点和5300万条边)来增强LLM的性能。
主要编程语言
该项目主要使用Python编程语言进行开发。
2. 项目使用的关键技术和框架
关键技术
- 知识图谱(Knowledge Graph, KG):用于提供领域特定的显式知识。
- 大型语言模型(Large Language Model, LLM):如GPT-4和GPT-3.5-turbo,用于处理自然语言生成任务。
- Retrieval-Augmented Generation (RAG):结合知识图谱和LLM,生成更准确和上下文相关的响应。
框架
- KG-RAG框架:通过从知识图谱中提取“提示感知上下文”,优化LLM的响应。
3. 项目安装和配置的准备工作和详细安装步骤
准备工作
- 操作系统:建议使用Linux或macOS系统。
- Python版本:建议使用Python 3.10.9。
- Git:用于克隆项目仓库。
- Conda:用于创建和管理虚拟环境。
详细安装步骤
步骤1:克隆项目仓库
首先,使用Git克隆项目仓库到本地:
git clone https://github.com/BaranziniLab/KG_RAG.git
cd KG_RAG
步骤2:创建虚拟环境
使用Conda创建一个新的虚拟环境,并激活它:
conda create -n kg_rag python=3.10.9
conda activate kg_rag
步骤3:安装依赖项
在激活的虚拟环境中,安装项目所需的依赖项:
pip install -r requirements.txt
步骤4:更新配置文件
编辑config.yaml文件,确保所有必要的配置信息都已正确填写。这个文件包含了运行脚本所需的所有信息。
步骤5:运行设置脚本
运行设置脚本以完成初始化:
python -m kg_rag.run_setup
步骤6:运行KG-RAG
最后,从终端运行KG-RAG。你可以选择使用GPT或Llama模型:
使用GPT:
# 使用Azure API
GPT_API_TYPE='azure' python -m kg_rag.rag_based_generation.GPT.text_generation -g gpt-4
# 使用OpenAI API
GPT_API_TYPE='openai' python -m kg_rag.rag_based_generation.GPT.text_generation -g gpt-3.5-turbo
使用Llama:
python -m kg_rag.rag_based_generation.Llama.text_generation -m method-1
注意事项
- 确保在运行KG-RAG之前,你已经正确配置了API密钥和相关设置。
- 如果你选择使用Llama模型,首次运行时可能需要下载模型,这可能需要一些时间。
通过以上步骤,你应该能够成功安装和配置KG-RAG项目,并开始使用它进行知识密集型任务的处理。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355