KG-RAG 项目安装和配置指南
2026-01-20 01:19:58作者:曹令琨Iris
1. 项目基础介绍和主要编程语言
项目基础介绍
KG-RAG(Knowledge Graph-based Retrieval Augmented Generation)是一个任务无关的框架,旨在结合知识图谱(Knowledge Graph, KG)的显式知识和大型语言模型(Large Language Model, LLM)的隐式知识,用于知识密集型任务。该项目主要应用于生物医学领域,利用大规模的生物医学知识图谱SPOKE(包含超过2700万个节点和5300万条边)来增强LLM的性能。
主要编程语言
该项目主要使用Python编程语言进行开发。
2. 项目使用的关键技术和框架
关键技术
- 知识图谱(Knowledge Graph, KG):用于提供领域特定的显式知识。
- 大型语言模型(Large Language Model, LLM):如GPT-4和GPT-3.5-turbo,用于处理自然语言生成任务。
- Retrieval-Augmented Generation (RAG):结合知识图谱和LLM,生成更准确和上下文相关的响应。
框架
- KG-RAG框架:通过从知识图谱中提取“提示感知上下文”,优化LLM的响应。
3. 项目安装和配置的准备工作和详细安装步骤
准备工作
- 操作系统:建议使用Linux或macOS系统。
- Python版本:建议使用Python 3.10.9。
- Git:用于克隆项目仓库。
- Conda:用于创建和管理虚拟环境。
详细安装步骤
步骤1:克隆项目仓库
首先,使用Git克隆项目仓库到本地:
git clone https://github.com/BaranziniLab/KG_RAG.git
cd KG_RAG
步骤2:创建虚拟环境
使用Conda创建一个新的虚拟环境,并激活它:
conda create -n kg_rag python=3.10.9
conda activate kg_rag
步骤3:安装依赖项
在激活的虚拟环境中,安装项目所需的依赖项:
pip install -r requirements.txt
步骤4:更新配置文件
编辑config.yaml文件,确保所有必要的配置信息都已正确填写。这个文件包含了运行脚本所需的所有信息。
步骤5:运行设置脚本
运行设置脚本以完成初始化:
python -m kg_rag.run_setup
步骤6:运行KG-RAG
最后,从终端运行KG-RAG。你可以选择使用GPT或Llama模型:
使用GPT:
# 使用Azure API
GPT_API_TYPE='azure' python -m kg_rag.rag_based_generation.GPT.text_generation -g gpt-4
# 使用OpenAI API
GPT_API_TYPE='openai' python -m kg_rag.rag_based_generation.GPT.text_generation -g gpt-3.5-turbo
使用Llama:
python -m kg_rag.rag_based_generation.Llama.text_generation -m method-1
注意事项
- 确保在运行KG-RAG之前,你已经正确配置了API密钥和相关设置。
- 如果你选择使用Llama模型,首次运行时可能需要下载模型,这可能需要一些时间。
通过以上步骤,你应该能够成功安装和配置KG-RAG项目,并开始使用它进行知识密集型任务的处理。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
501
3.66 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
暂无简介
Dart
749
180
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
870
490
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
318
134
仓颉编译器源码及 cjdb 调试工具。
C++
150
882
React Native鸿蒙化仓库
JavaScript
298
347