Nibbler 技术文档
2024-12-23 09:20:43作者:宣利权Counsellor
1. 安装指南
Nibbler 是一个轻量级的 Ruby 库,用于将数据结构映射到自定义对象中。安装 Nibbler 非常简单,您可以通过 Ruby 的包管理器 gem 来安装。
在终端中运行以下命令:
gem install nibbler
如果您正在使用 Nokogiri 库处理 HTML 字符串,请确保也安装了 Nokogiri:
gem install nokogiri
对于 Ruby 1.8 用户,如果需要解析 JSON 内容,还需要安装 JSON 库:
gem install json
2. 项目使用说明
Nibbler 可以用于 HTML 屏幕抓取、解析 XML API 负载或者 JSON 数据。以下是一些基本的使用示例:
HTML 屏幕抓取
require 'nibbler'
require 'open-uri'
class BlogScraper < Nibbler
element :title
elements 'div.hentry' => :articles do
element 'h2' => :title
element 'a/@href' => :url
end
end
blog = BlogScraper.parse open('http://example.com')
puts blog.title # 输出博客标题
puts blog.articles.first.title # 输出第一篇文章标题
puts blog.articles.first.url # 输出第一篇文章链接
XML API 负载解析
class Movie < Nibbler
element './title/@regular' => :name
element './box_art/@large' => :poster_large
element 'release_year' => :year, :with => lambda { |node| node.text.to_i }
element './/link[@title="web page"]/@href' => :url
end
response = Net::HTTP.get_response URI('http://example.com/movie.xml')
movie = Movie.parse response.body
puts movie.name # 输出电影名称
puts movie.year # 输出电影年份
JSON 数据解析
require 'json'
require 'nibbler/json'
class Movie < NibblerJSON
element :title
element :year
elements :genres
element '.links.alternate' => :url
element '.ratings.critics_score' => :critics_score
end
movie = Movie.parse json_string
puts movie.title # 输出电影标题
puts movie.year # 输出电影年份
puts movie.genres.join(', ') # 输出电影类型
puts movie.url # 输出电影链接
3. 项目 API 使用文档
Nibbler 提供了以下核心方法:
element:定义一个元素映射。elements:定义多个元素映射。parse:解析给定的字符串或对象。
对于 JSON 数据,NibblerJSON 类提供了相同的方法。
元素选择器
元素选择器可以是 CSS 选择器,对于 XML,也可以使用 XPath 选择器。
映射转换
您可以在定义元素时,通过 :with 选项提供一个 lambda 函数来进行数据转换。
示例
class Product < Nibbler
element '.name' => :name
element '.price' => :price, :with => lambda { |node| node.text.to_f }
end
在上面的例子中,价格会被转换为浮点数。
4. 项目安装方式
除了通过 gem 安装之外,您也可以将 Nibbler 库的代码克隆到本地,然后手动安装。
克隆代码仓库:
git clone https://github.com/mislav/nibbler.git
然后,在项目的根目录下运行:
ruby setup.rb
这样,Nibbler 库就会被安装到您的 Ruby 环境中。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
WebVideoDownloader:高效网页视频抓取工具全面使用指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
293
2.62 K
暂无简介
Dart
584
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
deepin linux kernel
C
24
7
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.28 K
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
758
72
Ascend Extension for PyTorch
Python
123
149
仓颉编译器源码及 cjdb 调试工具。
C++
122
409
仓颉编程语言运行时与标准库。
Cangjie
130
422