解决MacBook Pro M1上运行insanely-fast-whisper的NotImplementedError问题
在MacBook Pro M1设备上部署和使用insanely-fast-whisper语音识别模型时,开发者可能会遇到一个特定的NotImplementedError错误。这个问题源于PyTorch对MPS(Metal Performance Shaders)设备的支持尚不完善。
问题现象
当在MacBook Pro M1(2020款)上运行insanely-fast-whisper进行语音转录时,系统会抛出NotImplementedError异常。错误信息明确指出PyTorch尚未实现aten::isin.Tensor_Tensor_out操作符对MPS设备的支持。
错误原因分析
这个问题的核心在于PyTorch对Apple Silicon芯片(M1/M2)的MPS后端支持仍在开发阶段。MPS是Apple提供的Metal Performance Shaders框架,允许在Apple芯片上高效运行机器学习计算。然而,PyTorch对MPS的支持尚未覆盖所有操作符,导致某些功能无法正常运行。
具体到insanely-fast-whisper项目,当模型尝试生成转录文本时,会调用一个用于检查特殊令牌(如结束符)是否存在于填充令牌中的isin操作,而这一操作目前尚未在MPS后端实现。
解决方案
目前有两种可行的解决方案:
临时解决方案:启用MPS回退机制
可以通过设置环境变量PYTORCH_ENABLE_MPS_FALLBACK=1来启用MPS回退机制。当遇到MPS不支持的操时,系统会自动回退到CPU执行。虽然这会降低性能,但可以保证功能正常。
PYTORCH_ENABLE_MPS_FALLBACK=1 insanely-fast-whisper --file-name audio.wav --device-id mps --task transcribe --language nl --min-speakers 2
长期解决方案:等待PyTorch更新
PyTorch团队正在积极完善对MPS的支持。开发者可以关注PyTorch的GitHub问题追踪页面,了解相关操作符的实现进度。当PyTorch更新支持该操作符后,问题将自然解决。
性能考量
虽然启用MPS回退机制可以解决问题,但需要注意:
- 回退到CPU执行会显著降低处理速度
- 对于长音频文件(如20分钟),转录时间可能会明显增加
- 建议在开发/测试阶段使用此方案,生产环境考虑其他设备
最佳实践建议
对于MacBook Pro M1用户,建议:
- 对于短音频文件,使用回退方案即可
- 对于长音频处理,考虑使用云GPU服务
- 定期检查PyTorch更新,及时获取对MPS的完整支持
- 在性能要求高的场景下,考虑使用配备专用GPU的设备
通过以上分析和解决方案,开发者可以在MacBook Pro M1上顺利运行insanely-fast-whisper项目,同时了解相关技术限制和优化方向。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C050
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00