解决MacBook Pro M1上运行insanely-fast-whisper的NotImplementedError问题
在MacBook Pro M1设备上部署和使用insanely-fast-whisper语音识别模型时,开发者可能会遇到一个特定的NotImplementedError错误。这个问题源于PyTorch对MPS(Metal Performance Shaders)设备的支持尚不完善。
问题现象
当在MacBook Pro M1(2020款)上运行insanely-fast-whisper进行语音转录时,系统会抛出NotImplementedError异常。错误信息明确指出PyTorch尚未实现aten::isin.Tensor_Tensor_out操作符对MPS设备的支持。
错误原因分析
这个问题的核心在于PyTorch对Apple Silicon芯片(M1/M2)的MPS后端支持仍在开发阶段。MPS是Apple提供的Metal Performance Shaders框架,允许在Apple芯片上高效运行机器学习计算。然而,PyTorch对MPS的支持尚未覆盖所有操作符,导致某些功能无法正常运行。
具体到insanely-fast-whisper项目,当模型尝试生成转录文本时,会调用一个用于检查特殊令牌(如结束符)是否存在于填充令牌中的isin操作,而这一操作目前尚未在MPS后端实现。
解决方案
目前有两种可行的解决方案:
临时解决方案:启用MPS回退机制
可以通过设置环境变量PYTORCH_ENABLE_MPS_FALLBACK=1
来启用MPS回退机制。当遇到MPS不支持的操时,系统会自动回退到CPU执行。虽然这会降低性能,但可以保证功能正常。
PYTORCH_ENABLE_MPS_FALLBACK=1 insanely-fast-whisper --file-name audio.wav --device-id mps --task transcribe --language nl --min-speakers 2
长期解决方案:等待PyTorch更新
PyTorch团队正在积极完善对MPS的支持。开发者可以关注PyTorch的GitHub问题追踪页面,了解相关操作符的实现进度。当PyTorch更新支持该操作符后,问题将自然解决。
性能考量
虽然启用MPS回退机制可以解决问题,但需要注意:
- 回退到CPU执行会显著降低处理速度
- 对于长音频文件(如20分钟),转录时间可能会明显增加
- 建议在开发/测试阶段使用此方案,生产环境考虑其他设备
最佳实践建议
对于MacBook Pro M1用户,建议:
- 对于短音频文件,使用回退方案即可
- 对于长音频处理,考虑使用云GPU服务
- 定期检查PyTorch更新,及时获取对MPS的完整支持
- 在性能要求高的场景下,考虑使用配备专用GPU的设备
通过以上分析和解决方案,开发者可以在MacBook Pro M1上顺利运行insanely-fast-whisper项目,同时了解相关技术限制和优化方向。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0293ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++060Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









