ProseMirror在iOS特殊DOM环境下日语输入法兼容性问题解析
问题背景
ProseMirror作为一款优秀的富文本编辑器框架,在处理复杂输入场景时通常表现良好。然而,在特定环境下——特别是当编辑器被嵌入到特殊DOM结构中,并且用户在iOS设备上使用日语Kana输入法时,会出现一个特殊的问题:输入字符后整个文本会被高亮选中,导致用户无法连续输入多个词语。
现象描述
当用户在iOS设备(包括Safari和Chrome浏览器)上:
- 使用日语Kana输入法
- 在特殊DOM结构中的ProseMirror编辑器输入内容时
- 每输入一个字符后,所有已输入内容都会被自动选中
- 继续输入会替换之前的内容,无法形成连贯的句子
技术分析
这个问题源于ProseMirror视图层(prosemirror-view)中处理Safari浏览器下特殊DOM选区(range)的特殊逻辑。核心问题出现在safariSelectionRange函数中,该函数原本用于处理Safari在特殊DOM中的选区异常。
在标准情况下,这段代码通过启发式方法判断是否应该交换选区的锚点和焦点位置:
if (isEquivalentPosition(currentAnchor.node, currentAnchor.offset, focusNode, focusOffset)) {
[anchorNode, anchorOffset, focusNode, focusOffset] = [focusNode, focusOffset, anchorNode, anchorOffset];
}
然而,在日语Kana输入法下,这种启发式判断会导致选区状态异常,表现为不断选中全部文本的异常行为。
解决方案
经过项目维护者的分析,这个问题可以通过以下方式解决:
-
官方补丁:ProseMirror团队已经提交了一个修复补丁,调整了选区处理的逻辑,使其在日语输入法下也能正常工作。
-
临时解决方案:在等待官方版本更新的情况下,开发者可以通过监听组合输入事件,在每次组合输入后手动重置选区状态:
appendTransaction(transactions, prevState, state) {
const hasComposition = transactions.some(tr => tr.getMeta('composition'));
if (hasComposition) {
const { tr, doc, selection } = state;
const { from, to } = selection;
return tr.setSelection(TextSelection.create(doc, from, to));
}
}
技术深度解析
这个问题的本质在于浏览器输入事件处理与特殊DOM的特殊交互。在特殊DOM环境下:
- 浏览器对输入法事件的处理与常规DOM有所不同
- 选区(selection)API在特殊DOM中的行为存在浏览器差异
- 日语Kana输入法会产生特殊的输入序列和选区变化
ProseMirror原本的启发式逻辑在大多数情况下有效,但在这种特定组合下失效。修复方案通过更精确地处理特殊DOM中的选区状态,避免了不必要的位置交换。
最佳实践建议
对于需要在特殊DOM中使用ProseMirror并支持多语言输入的开发者:
- 确保使用最新版本的ProseMirror
- 针对复杂的输入法场景进行充分测试
- 考虑实现输入状态监控,以便及时发现和修复类似问题
- 在自定义插件中谨慎处理选区变化,避免干扰输入法正常工作
总结
这个案例展示了现代Web编辑器中处理国际化输入时面临的挑战,特别是在特殊DOM这样的封装环境下。通过理解浏览器、输入法和编辑器框架之间的复杂交互,开发者可以更好地诊断和解决类似问题。ProseMirror团队对此问题的快速响应也体现了开源项目对国际化支持的重要性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00