Cacti大规模监控环境下的性能优化实践
2025-07-09 13:32:45作者:裴锟轩Denise
背景概述
Cacti作为一款开源的网络监测和图形化工具,在监测大规模网络设备时可能会遇到性能瓶颈。本文基于一个实际案例,探讨如何优化Cacti在监测11,000台设备和130,000个传感器时的系统性能。
系统环境配置
案例中的监测系统配置如下:
- 服务器硬件:双路Intel Xeon Gold 6346处理器(共32核64线程),256GB内存
- 数据库:MariaDB 10.3.35
- Cacti版本:1.2.24
- 部署架构:两个远程数据收集器(poller)部署在不同城市
主要性能问题
系统运行中出现了几个关键性能问题:
- 数据收集时间超过300秒阈值
- 数据库内存使用率达到100%
- 磁盘I/O成为瓶颈,大量小文件操作导致磁盘100%利用率
数据库优化实践
内存配置调整
通过MySQLTuner分析发现几个关键问题:
- 最大可能内存使用量高达1926GB(1539%物理内存)
- InnoDB缓冲池配置不合理(32GB)
- 连接线程内存占用过高
优化建议:
- 降低
join_buffer_size
参数值(原768MB过高) - 调整
innodb_buffer_pool_instances
从64降到32或更低 - 增加
innodb_buffer_pool_size
到物理内存的50-70% - 启用
performance_schema
进行更详细监测
InnoDB日志优化
当前配置中InnoDB日志文件大小(48MB)仅占缓冲池的0.29%,远低于推荐的25%比例。建议将innodb_log_file_size
增加到4GB。
数据收集器(poller)配置优化
原配置使用10个进程和24个线程,导致数据库并发连接数达到700-800,给数据库带来过大压力。建议:
- 根据CPU核心数合理设置进程数(32核建议8-16个进程)
- 适当降低线程数,减少数据库并发压力
- 监测数据收集器CPU使用率,保持在50-60%为佳
存储优化方案
针对磁盘I/O瓶颈问题,实施以下优化:
- 使用SSD替换机械硬盘
- 配置RAID阵列提高I/O性能
- 将数据库文件和RRD文件迁移到SSD存储
系统稳定性增强措施
- 增加物理内存到256GB,避免使用swap交换分区
- 配置合理的日志轮转策略,避免日志文件过大
- 定期执行表优化(OPTIMIZE TABLE)减少碎片
- 考虑升级到更新的MariaDB版本(10.3已停止支持)
实施效果
经过上述优化后,系统表现出:
- 数据收集时间稳定在200秒左右
- 数据库内存使用趋于稳定
- 消除了因内存不足导致的交换问题
- 系统整体运行更加平稳
总结建议
对于大规模Cacti部署环境,需要特别注意:
- 数据库配置与硬件资源匹配
- 数据收集器并发设置与数据库处理能力平衡
- 使用高性能存储解决I/O瓶颈
- 定期进行系统维护和性能调优
通过系统化的优化方法,可以有效提升Cacti在大规模监测环境下的性能和稳定性。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~085CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

openGauss kernel ~ openGauss is an open source relational database management system
C++
136
187

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
884
523

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
362
381

React Native鸿蒙化仓库
C++
182
264

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
84
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
613
60

open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
118
78