ml-engineering项目中的GH200芯片矩阵乘法性能基准测试分析
在ml-engineering项目的计算加速性能基准测试工作中,我们对NVIDIA GH200 480GB芯片进行了深入的矩阵乘法性能测试。这项测试旨在评估该芯片在深度学习计算中的理论峰值性能表现。
测试环境配置
测试使用了PyTorch 2.4.0a0版本,运行在CUDA 12.5环境下。测试平台为Linux系统,搭载NVIDIA GH200 480GB显卡,该显卡具有132个多处理器核心和96GB显存容量。测试采用了bfloat16数据类型,这是深度学习训练中常用的半精度浮点格式。
初步测试结果
初始快速测试结果显示,GH200芯片在20224×4096×4096的矩阵乘法维度下达到了772.0 TFLOPS的性能表现。这个测试仅尝试了79种不同的矩阵形状组合,耗时仅7秒,为后续更全面的测试提供了初步参考。
中等规模测试
随后进行的更全面测试将搜索范围扩大到5376×5376×5376的维度空间,步长为256。这次测试尝试了8000种不同的矩阵形状组合,耗时1分52秒。最佳性能出现在4864×4096×4352的维度组合下,达到727.6 TFLOPS。值得注意的是,这个结果反而低于初步测试,表明中等维度的矩阵乘法可能无法充分发挥GH200的潜力。
全面性能扫描
为了获得更准确的最大可达到性能指标,研究团队进行了全面的维度空间扫描,范围扩展到20480×20480×20480。这项测试耗时超过2天13小时,尝试了近50万种不同的矩阵形状组合。最终结果显示:
- 最高性能:831.7 TFLOPS
- 最佳维度组合:12288×14336×15872
另一个独立测试在11264×19712×1536的维度组合下达到了821.0 TFLOPS的性能。性能差异可能与测试时的GPU温度有关(56°C vs 76°C),表明散热条件对最终性能表现有显著影响。
性能分析与理论对比
GH200的理论峰值性能为989 TFLOPS。实测831.7 TFLOPS的性能相当于理论值的84.1%效率。这个效率水平在GPU计算中属于优秀表现,表明GH200的硬件架构和软件栈已经得到了很好的优化。
测试脚本改进
在测试过程中,发现性能监控输出逻辑存在优化空间。原始脚本只在发现新峰值时才输出当前配置信息,这不利于实时监控测试进度。改进后的版本将持续输出当前测试配置,为长时间运行的测试提供更好的可视化反馈。
结论
通过系统性的基准测试,我们确认NVIDIA GH200 480GB显卡在大型矩阵乘法运算中能够稳定实现超过800 TFLOPS的实际计算性能,达到理论峰值的84%以上。这一性能表现使其成为高性能深度学习训练的理想选择。测试结果也强调了散热条件对持续高性能计算的重要性,良好的冷却系统可以带来约5%的性能提升。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00