DeepFashion 开源项目教程
2024-08-21 18:42:27作者:柏廷章Berta
项目介绍
DeepFashion 是一个专注于时尚图像分析的开源项目,由 Abhishek Rana 开发并维护。该项目利用深度学习技术,旨在解决时尚领域的图像识别、分类和检索问题。DeepFashion 提供了丰富的数据集和预训练模型,使得研究人员和开发者能够快速构建和部署时尚相关的图像处理应用。
项目快速启动
环境准备
在开始之前,请确保您的开发环境已经安装了以下依赖:
- Python 3.6 或更高版本
- TensorFlow 2.0 或更高版本
- NumPy
- Matplotlib
克隆项目
首先,克隆 DeepFashion 项目到本地:
git clone https://github.com/abhishekrana/DeepFashion.git
cd DeepFashion
数据准备
下载 DeepFashion 数据集并解压到项目目录中:
wget http://www.platform.ai/files/deepfashion.zip
unzip deepfashion.zip -d data
训练模型
使用提供的脚本训练模型:
python train.py --data_dir data/deepfashion --model_dir models
评估模型
训练完成后,可以使用以下命令评估模型性能:
python evaluate.py --data_dir data/deepfashion --model_dir models
应用案例和最佳实践
时尚图像分类
DeepFashion 可以用于时尚图像的分类任务,例如将服装图片分类为上衣、裤子、裙子等。以下是一个简单的示例代码:
import tensorflow as tf
from models import FashionModel
# 加载预训练模型
model = FashionModel()
model.load_weights('models/best_model.h5')
# 预测图像类别
image_path = 'test_image.jpg'
image = tf.keras.preprocessing.image.load_img(image_path, target_size=(224, 224))
image = tf.keras.preprocessing.image.img_to_array(image)
image = tf.expand_dims(image, 0)
predictions = model.predict(image)
print(predictions)
时尚图像检索
DeepFashion 还可以用于时尚图像的检索任务,即根据输入的图像找到相似的时尚图片。以下是一个示例代码:
import numpy as np
from sklearn.neighbors import NearestNeighbors
from models import FashionModel
# 加载预训练模型
model = FashionModel()
model.load_weights('models/best_model.h5')
# 提取特征向量
def extract_features(image_path):
image = tf.keras.preprocessing.image.load_img(image_path, target_size=(224, 224))
image = tf.keras.preprocessing.image.img_to_array(image)
image = tf.expand_dims(image, 0)
features = model.predict(image)
return features.flatten()
# 构建特征向量库
image_paths = ['image1.jpg', 'image2.jpg', 'image3.jpg']
features = [extract_features(path) for path in image_paths]
# 构建最近邻模型
nn_model = NearestNeighbors(n_neighbors=3)
nn_model.fit(features)
# 查询相似图像
query_image_path = 'query_image.jpg'
query_features = extract_features(query_image_path)
distances, indices = nn_model.kneighbors([query_features])
print(indices)
典型生态项目
Fashion-MNIST
Fashion-MNIST 是一个类似于 MNIST 的数据集,但包含的是时尚物品的图像。它常用于测试和比较不同的图像分类算法。
TensorFlow Hub
TensorFlow Hub 提供了许多预训练的模型,包括用于时尚图像处理的模型。这些模型可以直接用于迁移学习,加速新项目的开发。
PyTorch
虽然 DeepFashion 主要基于 TensorFlow,但 PyTorch 也是一个流行的深度学习框架,有许多类似的时尚图像处理项目和模型。
通过结合这些生态项目,开发者可以构建更复杂和强大的时尚图像处理应用。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178