DeepFashion 开源项目教程
2024-08-21 18:42:27作者:柏廷章Berta
项目介绍
DeepFashion 是一个专注于时尚图像分析的开源项目,由 Abhishek Rana 开发并维护。该项目利用深度学习技术,旨在解决时尚领域的图像识别、分类和检索问题。DeepFashion 提供了丰富的数据集和预训练模型,使得研究人员和开发者能够快速构建和部署时尚相关的图像处理应用。
项目快速启动
环境准备
在开始之前,请确保您的开发环境已经安装了以下依赖:
- Python 3.6 或更高版本
- TensorFlow 2.0 或更高版本
- NumPy
- Matplotlib
克隆项目
首先,克隆 DeepFashion 项目到本地:
git clone https://github.com/abhishekrana/DeepFashion.git
cd DeepFashion
数据准备
下载 DeepFashion 数据集并解压到项目目录中:
wget http://www.platform.ai/files/deepfashion.zip
unzip deepfashion.zip -d data
训练模型
使用提供的脚本训练模型:
python train.py --data_dir data/deepfashion --model_dir models
评估模型
训练完成后,可以使用以下命令评估模型性能:
python evaluate.py --data_dir data/deepfashion --model_dir models
应用案例和最佳实践
时尚图像分类
DeepFashion 可以用于时尚图像的分类任务,例如将服装图片分类为上衣、裤子、裙子等。以下是一个简单的示例代码:
import tensorflow as tf
from models import FashionModel
# 加载预训练模型
model = FashionModel()
model.load_weights('models/best_model.h5')
# 预测图像类别
image_path = 'test_image.jpg'
image = tf.keras.preprocessing.image.load_img(image_path, target_size=(224, 224))
image = tf.keras.preprocessing.image.img_to_array(image)
image = tf.expand_dims(image, 0)
predictions = model.predict(image)
print(predictions)
时尚图像检索
DeepFashion 还可以用于时尚图像的检索任务,即根据输入的图像找到相似的时尚图片。以下是一个示例代码:
import numpy as np
from sklearn.neighbors import NearestNeighbors
from models import FashionModel
# 加载预训练模型
model = FashionModel()
model.load_weights('models/best_model.h5')
# 提取特征向量
def extract_features(image_path):
image = tf.keras.preprocessing.image.load_img(image_path, target_size=(224, 224))
image = tf.keras.preprocessing.image.img_to_array(image)
image = tf.expand_dims(image, 0)
features = model.predict(image)
return features.flatten()
# 构建特征向量库
image_paths = ['image1.jpg', 'image2.jpg', 'image3.jpg']
features = [extract_features(path) for path in image_paths]
# 构建最近邻模型
nn_model = NearestNeighbors(n_neighbors=3)
nn_model.fit(features)
# 查询相似图像
query_image_path = 'query_image.jpg'
query_features = extract_features(query_image_path)
distances, indices = nn_model.kneighbors([query_features])
print(indices)
典型生态项目
Fashion-MNIST
Fashion-MNIST 是一个类似于 MNIST 的数据集,但包含的是时尚物品的图像。它常用于测试和比较不同的图像分类算法。
TensorFlow Hub
TensorFlow Hub 提供了许多预训练的模型,包括用于时尚图像处理的模型。这些模型可以直接用于迁移学习,加速新项目的开发。
PyTorch
虽然 DeepFashion 主要基于 TensorFlow,但 PyTorch 也是一个流行的深度学习框架,有许多类似的时尚图像处理项目和模型。
通过结合这些生态项目,开发者可以构建更复杂和强大的时尚图像处理应用。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
306
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882