EmbedChain项目中JSON解析异常问题分析与解决方案
2025-05-06 18:06:03作者:傅爽业Veleda
问题背景
在EmbedChain项目开发过程中,当使用Qwen模型(阿里巴巴云提供的AI模型)处理记忆更新功能时,发现了一个JSON解析异常问题。核心错误表现为json.decoder.JSONDecodeError,具体发生在尝试解析AI模型返回的JSON内容时。
问题分析
深入分析后发现,问题的根源在于AI模型的输出格式与预期不符。虽然开发者明确指定了响应格式为JSON对象(response_format={"type": "json_object"}),但Qwen模型返回的内容却采用了Markdown代码块的形式:
{
"memory": [
{
"id": "(UUID)",
"text": "I'm visiting Paris",
"event": "ADD"
}
]
}
这种格式虽然对人类阅读友好,但直接使用Python标准库的json.loads()函数解析时会失败,因为该函数期望接收纯JSON字符串,而不是包含Markdown标记的内容。
影响范围
该问题主要影响两个关键功能点:
- 记忆更新功能中解析新记忆数据的部分
- 记忆检索功能中处理返回结果的环节
解决方案
针对这一问题,社区贡献者提出了一个稳健的解决方案,通过正则表达式预处理AI返回的内容:
import re
search_result = re.search("(```json)((.*\n)+)(```)", new_memories_with_actions)
if search_result:
new_memories_with_actions = search_result.group(2).strip()
这个解决方案的核心思路是:
- 使用正则表达式匹配Markdown代码块模式
- 提取代码块中的纯JSON内容
- 去除前后空白字符
- 最后再进行JSON解析
技术要点
- 正则表达式设计:模式
(```json)((.*\n)+)(```)能够准确匹配以json开头和结尾的代码块 - 容错处理:即使AI返回纯JSON(没有代码块标记),也不会影响正常解析流程
- 字符串处理:使用
strip()确保去除可能的空白字符干扰
最佳实践建议
- 模型适配:当使用非OpenAI官方模型时,应特别注意输出格式的差异
- 输入输出验证:在处理AI模型返回内容时,增加格式验证层
- 日志记录:记录原始响应内容,便于调试类似问题
- 单元测试:针对不同格式的响应编写测试用例
总结
这个问题的解决展示了在AI集成开发中处理不同模型输出差异的重要性。通过增加预处理层,我们既保持了与现有代码的兼容性,又增强了对不同AI模型输出的适应性。这种解决方案不仅适用于EmbedChain项目,也可以为其他需要处理AI生成JSON内容的项目提供参考。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134