EmbedChain项目中JSON解析异常问题分析与解决方案
2025-05-06 03:10:12作者:傅爽业Veleda
问题背景
在EmbedChain项目开发过程中,当使用Qwen模型(阿里巴巴云提供的AI模型)处理记忆更新功能时,发现了一个JSON解析异常问题。核心错误表现为json.decoder.JSONDecodeError
,具体发生在尝试解析AI模型返回的JSON内容时。
问题分析
深入分析后发现,问题的根源在于AI模型的输出格式与预期不符。虽然开发者明确指定了响应格式为JSON对象(response_format={"type": "json_object"}
),但Qwen模型返回的内容却采用了Markdown代码块的形式:
{
"memory": [
{
"id": "(UUID)",
"text": "I'm visiting Paris",
"event": "ADD"
}
]
}
这种格式虽然对人类阅读友好,但直接使用Python标准库的json.loads()
函数解析时会失败,因为该函数期望接收纯JSON字符串,而不是包含Markdown标记的内容。
影响范围
该问题主要影响两个关键功能点:
- 记忆更新功能中解析新记忆数据的部分
- 记忆检索功能中处理返回结果的环节
解决方案
针对这一问题,社区贡献者提出了一个稳健的解决方案,通过正则表达式预处理AI返回的内容:
import re
search_result = re.search("(```json)((.*\n)+)(```)", new_memories_with_actions)
if search_result:
new_memories_with_actions = search_result.group(2).strip()
这个解决方案的核心思路是:
- 使用正则表达式匹配Markdown代码块模式
- 提取代码块中的纯JSON内容
- 去除前后空白字符
- 最后再进行JSON解析
技术要点
- 正则表达式设计:模式
(```json)((.*\n)+)(```)
能够准确匹配以json开头和
结尾的代码块 - 容错处理:即使AI返回纯JSON(没有代码块标记),也不会影响正常解析流程
- 字符串处理:使用
strip()
确保去除可能的空白字符干扰
最佳实践建议
- 模型适配:当使用非OpenAI官方模型时,应特别注意输出格式的差异
- 输入输出验证:在处理AI模型返回内容时,增加格式验证层
- 日志记录:记录原始响应内容,便于调试类似问题
- 单元测试:针对不同格式的响应编写测试用例
总结
这个问题的解决展示了在AI集成开发中处理不同模型输出差异的重要性。通过增加预处理层,我们既保持了与现有代码的兼容性,又增强了对不同AI模型输出的适应性。这种解决方案不仅适用于EmbedChain项目,也可以为其他需要处理AI生成JSON内容的项目提供参考。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
52
455

deepin linux kernel
C
22
5

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

openGauss kernel ~ openGauss is an open source relational database management system
C++
131
185

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
873
517

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
335
1.09 K

React Native鸿蒙化仓库
C++
179
264

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
607
59

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4