lm-evaluation-harness项目中预处理技术的改进探讨
2025-05-26 04:38:12作者:江焘钦
概述
在自然语言处理评估框架lm-evaluation-harness中,预处理环节对于确保评估数据的质量和一致性至关重要。近期项目维护者注意到,对于paws-x和xnli等任务,当前缺乏系统性的文本预处理步骤,这可能导致评估结果出现偏差或不可靠。
现有问题分析
在当前的实现中,paws-x和xnli任务中的英文样本存在几个明显的预处理不足问题:
- 样本中存在多余的空格字符
- 第一句话末尾的标点符号处理不当
- 第二句话首字母大小写不规范(特别是在"Yes"/"No"回答后)
这些问题在英文样本中表现得尤为明显,例如:
paws_en任务样本:
" Teams had to use a traditional tribal club from a distance to hit the pots ., right? No, The teams had to use a traditional tribal club from a distance to hit the pots ."
xnli_en任务样本:
" And he said, Mama, I'm home., right? Yes, He called his mom as soon as the school bus dropped him off."
西班牙语预处理方案
项目中的spanish_bench已经实现了一套有效的预处理方案,位于utils.py文件中,主要包括:
- 移除多余的空格字符
- 规范化第一句话末尾的标点符号
- 将第二句话首字母改为小写(在"Yes"/"No"回答后)
经过预处理后的西班牙语样本展示出更好的格式一致性:
paws_es预处理后样本:
"Los equipos tuvieron que usar un club tribal tradicional desde la distancia para golpear los botes, ¿verdad? Sí, los equipos tuvieron que usar un club tribal tradicional desde la distancia para golpear los botes."
xnli_es预处理后样本:
"Y él dijo: Mamá, estoy en casa, ¿correcto? Sí, llamó a su madre tan pronto como el autobús escolar lo dejó."
多语言预处理扩展建议
基于西班牙语预处理方案的成功经验,建议将类似的预处理技术扩展到其他遵循相同语言规则的语言,包括:
- 英语(English)
- 法语(French)
- 德语(German)
这些语言的预处理可以遵循相似的原则:
- 空格规范化:移除句子开头、结尾和中间的多余空格
- 标点规范化:确保第一句话末尾标点符号的正确性
- 大小写规范化:在"Yes"/"No"回答后,将后续文本的首字母改为小写
技术实现考量
实现这些预处理改进时,需要考虑以下技术因素:
- 语言特异性规则:不同语言的标点使用习惯可能不同
- Unicode处理:确保预处理能够正确处理各种语言的Unicode字符
- 性能影响:预处理步骤不应显著增加评估时间
- 向后兼容:改进不应破坏现有的评估结果比较
结论
通过系统性地改进lm-evaluation-harness中的预处理技术,特别是对于paws-x和xnli等任务,可以显著提高评估数据的质量和一致性。借鉴spanish_bench中已验证的预处理方案,并将其扩展到其他相关语言,将有助于获得更可靠、可比较的评估结果。这一改进对于确保跨语言评估的公平性和准确性具有重要意义。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-R1-0528DeepSeek-R1-0528 是 DeepSeek R1 系列的小版本升级,通过增加计算资源和后训练算法优化,显著提升推理深度与推理能力,整体性能接近行业领先模型(如 O3、Gemini 2.5 Pro)Python00
cherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端TSX030deepflow
DeepFlow 是云杉网络 (opens new window)开发的一款可观测性产品,旨在为复杂的云基础设施及云原生应用提供深度可观测性。DeepFlow 基于 eBPF 实现了应用性能指标、分布式追踪、持续性能剖析等观测信号的零侵扰(Zero Code)采集,并结合智能标签(SmartEncoding)技术实现了所有观测信号的全栈(Full Stack)关联和高效存取。使用 DeepFlow,可以让云原生应用自动具有深度可观测性,从而消除开发者不断插桩的沉重负担,并为 DevOps/SRE 团队提供从代码到基础设施的监控及诊断能力。Go00
热门内容推荐
1 freeCodeCamp 个人资料页时间线分页按钮优化方案2 freeCodeCamp基础CSS教程中块级元素特性的补充说明3 freeCodeCamp课程中"午餐选择器"实验的文档修正说明4 freeCodeCamp排序可视化项目中Bubble Sort算法的实现问题分析5 freeCodeCamp课程中JavaScript变量提升机制的修正说明6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp 实验室项目:表单输入样式选择器优化建议8 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析9 freeCodeCamp贷款资格检查器中的参数验证问题分析10 freeCodeCamp全栈开发课程中收藏图标切换器的优化建议
最新内容推荐
Nilesoft Shell 项目中的静态配置项变更与图标修改指南 Vike项目中render钩子与URL路径更新的技术解析 KillWxapkg项目:解决微信小程序wxapkg文件找不到的问题 Authlib中Basic认证用户名密码编码问题的分析与解决 Swarms项目工具集成问题分析与解决方案 Zammad项目中Webhook删除机制的技术解析与优化建议 Tuist项目中sourcedocs依赖安装失败问题解析 AgentPress项目新增对自托管Firecrawl的支持 React Native WebRTC 远程视频黑屏问题排查指南 Spring AI工具函数新增图像生成支持的技术解析
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
427
321

React Native鸿蒙化仓库
C++
92
163

openGauss kernel ~ openGauss is an open source relational database management system
C++
48
116

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
50
13

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
269
425

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
87
240

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TSX
316
30

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
342
213

基于仓颉编程语言构建的 LLM Agent 开发框架,其主要特点包括:Agent DSL、支持 MCP 协议,支持模块化调用,支持任务智能规划。
Cangjie
557
39

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
626
75