lm-evaluation-harness项目中预处理技术的改进探讨
2025-05-26 23:11:15作者:江焘钦
概述
在自然语言处理评估框架lm-evaluation-harness中,预处理环节对于确保评估数据的质量和一致性至关重要。近期项目维护者注意到,对于paws-x和xnli等任务,当前缺乏系统性的文本预处理步骤,这可能导致评估结果出现偏差或不可靠。
现有问题分析
在当前的实现中,paws-x和xnli任务中的英文样本存在几个明显的预处理不足问题:
- 样本中存在多余的空格字符
- 第一句话末尾的标点符号处理不当
- 第二句话首字母大小写不规范(特别是在"Yes"/"No"回答后)
这些问题在英文样本中表现得尤为明显,例如:
paws_en任务样本:
" Teams had to use a traditional tribal club from a distance to hit the pots ., right? No, The teams had to use a traditional tribal club from a distance to hit the pots ."
xnli_en任务样本:
" And he said, Mama, I'm home., right? Yes, He called his mom as soon as the school bus dropped him off."
西班牙语预处理方案
项目中的spanish_bench已经实现了一套有效的预处理方案,位于utils.py文件中,主要包括:
- 移除多余的空格字符
- 规范化第一句话末尾的标点符号
- 将第二句话首字母改为小写(在"Yes"/"No"回答后)
经过预处理后的西班牙语样本展示出更好的格式一致性:
paws_es预处理后样本:
"Los equipos tuvieron que usar un club tribal tradicional desde la distancia para golpear los botes, ¿verdad? Sí, los equipos tuvieron que usar un club tribal tradicional desde la distancia para golpear los botes."
xnli_es预处理后样本:
"Y él dijo: Mamá, estoy en casa, ¿correcto? Sí, llamó a su madre tan pronto como el autobús escolar lo dejó."
多语言预处理扩展建议
基于西班牙语预处理方案的成功经验,建议将类似的预处理技术扩展到其他遵循相同语言规则的语言,包括:
- 英语(English)
- 法语(French)
- 德语(German)
这些语言的预处理可以遵循相似的原则:
- 空格规范化:移除句子开头、结尾和中间的多余空格
- 标点规范化:确保第一句话末尾标点符号的正确性
- 大小写规范化:在"Yes"/"No"回答后,将后续文本的首字母改为小写
技术实现考量
实现这些预处理改进时,需要考虑以下技术因素:
- 语言特异性规则:不同语言的标点使用习惯可能不同
- Unicode处理:确保预处理能够正确处理各种语言的Unicode字符
- 性能影响:预处理步骤不应显著增加评估时间
- 向后兼容:改进不应破坏现有的评估结果比较
结论
通过系统性地改进lm-evaluation-harness中的预处理技术,特别是对于paws-x和xnli等任务,可以显著提高评估数据的质量和一致性。借鉴spanish_bench中已验证的预处理方案,并将其扩展到其他相关语言,将有助于获得更可靠、可比较的评估结果。这一改进对于确保跨语言评估的公平性和准确性具有重要意义。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
Kimi-K2-ThinkingKimi-K2-Thinking是最新开源思维模型,作为能动态调用工具的推理代理,通过深度多步推理和稳定工具调用(200-300次连续调用),在HLE、BrowseComp等基准测试中刷新纪录。原生INT4量化模型,256k上下文窗口,实现推理延迟和GPU内存使用的无损降低,支持自主研究、编码和写作等工作流。【此简介由AI生成】Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
296
2.64 K
Ascend Extension for PyTorch
Python
128
149
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
607
190
React Native鸿蒙化仓库
JavaScript
228
307
暂无简介
Dart
588
127
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
611
仓颉编译器源码及 cjdb 调试工具。
C++
122
460
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
77
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
178
62
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
454