lm-evaluation-harness项目中预处理技术的改进探讨
2025-05-26 11:29:14作者:江焘钦
概述
在自然语言处理评估框架lm-evaluation-harness中,预处理环节对于确保评估数据的质量和一致性至关重要。近期项目维护者注意到,对于paws-x和xnli等任务,当前缺乏系统性的文本预处理步骤,这可能导致评估结果出现偏差或不可靠。
现有问题分析
在当前的实现中,paws-x和xnli任务中的英文样本存在几个明显的预处理不足问题:
- 样本中存在多余的空格字符
- 第一句话末尾的标点符号处理不当
- 第二句话首字母大小写不规范(特别是在"Yes"/"No"回答后)
这些问题在英文样本中表现得尤为明显,例如:
paws_en任务样本:
" Teams had to use a traditional tribal club from a distance to hit the pots ., right? No, The teams had to use a traditional tribal club from a distance to hit the pots ."
xnli_en任务样本:
" And he said, Mama, I'm home., right? Yes, He called his mom as soon as the school bus dropped him off."
西班牙语预处理方案
项目中的spanish_bench已经实现了一套有效的预处理方案,位于utils.py文件中,主要包括:
- 移除多余的空格字符
- 规范化第一句话末尾的标点符号
- 将第二句话首字母改为小写(在"Yes"/"No"回答后)
经过预处理后的西班牙语样本展示出更好的格式一致性:
paws_es预处理后样本:
"Los equipos tuvieron que usar un club tribal tradicional desde la distancia para golpear los botes, ¿verdad? Sí, los equipos tuvieron que usar un club tribal tradicional desde la distancia para golpear los botes."
xnli_es预处理后样本:
"Y él dijo: Mamá, estoy en casa, ¿correcto? Sí, llamó a su madre tan pronto como el autobús escolar lo dejó."
多语言预处理扩展建议
基于西班牙语预处理方案的成功经验,建议将类似的预处理技术扩展到其他遵循相同语言规则的语言,包括:
- 英语(English)
- 法语(French)
- 德语(German)
这些语言的预处理可以遵循相似的原则:
- 空格规范化:移除句子开头、结尾和中间的多余空格
- 标点规范化:确保第一句话末尾标点符号的正确性
- 大小写规范化:在"Yes"/"No"回答后,将后续文本的首字母改为小写
技术实现考量
实现这些预处理改进时,需要考虑以下技术因素:
- 语言特异性规则:不同语言的标点使用习惯可能不同
- Unicode处理:确保预处理能够正确处理各种语言的Unicode字符
- 性能影响:预处理步骤不应显著增加评估时间
- 向后兼容:改进不应破坏现有的评估结果比较
结论
通过系统性地改进lm-evaluation-harness中的预处理技术,特别是对于paws-x和xnli等任务,可以显著提高评估数据的质量和一致性。借鉴spanish_bench中已验证的预处理方案,并将其扩展到其他相关语言,将有助于获得更可靠、可比较的评估结果。这一改进对于确保跨语言评估的公平性和准确性具有重要意义。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
基于STM32F103的VL53L0X红外测距工程 gr-gsm 项目安装与使用教程【亲测免费】 DSP28335 Modbus RTU 学习例程 Wav2Lip-HD 项目使用教程【亲测免费】 PyQt6图书管理系统 Python项目源码 完整版下载 Raspberry Pi 4 UEFI Firmware 项目使用教程 自平衡小车Arduino项目实战Every-Marketplace技能创建器项目管理方法论:敏捷开发在技能开发中的应用【免费下载】 【视觉问答(Visual Question Answering)项目实战指南】——基于GT-Vision-Lab/VQA【亲测免费】 Hypersim 项目使用教程
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882