Apache Kyuubi 中 Spark History Server 显示不完整应用的问题分析
问题背景
在 Apache Kyuubi 项目中,当用户尝试通过 Spark History Server 查看不完整的应用程序时,会遇到一个类型转换异常。具体表现为访问 Kyuubi Query Engine UI 时出现 HTTP 500 错误,错误信息显示无法将 Integer 类型转换为 Long 类型。
错误现象
用户在访问 Spark History Server 时,系统抛出以下异常:
java.lang.ClassCastException: java.lang.Integer cannot be cast to java.lang.Long
这个错误发生在 org.apache.spark.ui.StatementStatsPagedTable.row 方法中,具体是在处理引擎页面数据时出现的类型转换问题。
问题根源
经过深入分析,这个问题与 Jackson 库在 Scala 中的类型处理有关。当 Spark History Server 尝试从持久化的数据中读取操作运行时间(operationRunTime)和操作CPU时间(operationCpuTime)时,Jackson 默认将这些数值反序列化为 Integer 类型,而代码中期望的是 Long 类型,导致了类型转换异常。
解决方案
针对这个问题,社区提出了两种解决方案:
-
直接类型转换方案:在代码中显式地将 Integer 转换为 Long,这种方法虽然有效,但不是最优雅的解决方案。
-
Jackson 注解方案:使用
@JsonDeserialize注解明确指定反序列化目标类型为 Long,这是更符合设计原则的解决方案。
最终采用了第二种方案,通过在相关字段上添加 @JsonDeserialize(contentAs = classOf[java.lang.Long]) 注解,明确告诉 Jackson 反序列化器应该将数值转换为 Long 类型,从而避免了类型转换异常。
技术细节
这个问题实际上反映了 Scala 和 Java 类型系统在 Jackson 序列化/反序列化过程中的一些微妙差异。在 Scala 中,数值类型的处理有时会与 Java 产生不一致,特别是在泛型和类型擦除的上下文中。
@JsonDeserialize 注解是 Jackson 提供的一个强大工具,它允许开发者精确控制反序列化过程。在这个案例中,我们用它来确保数值字段总是被反序列化为 Long 类型,无论原始数据是以什么格式存储的。
影响范围
该问题主要影响以下场景:
- 使用 Spark 3.3.2 版本的集群
- 通过 Spark History Server 查看不完整的应用程序
- 访问 Kyuubi Query Engine UI 时
修复效果
修复后,用户可以正常通过 Spark History Server 查看所有应用程序,包括不完整的应用,且 Kyuubi Query Engine UI 能够正确显示,不再出现类型转换错误。
总结
这个问题展示了在复杂的数据处理系统中,类型系统的一致性是多么重要。通过使用 Jackson 提供的类型提示功能,我们能够确保数据在不同组件间传递时保持类型一致性,从而避免运行时异常。这也提醒开发者在设计跨语言、跨系统的数据接口时,需要特别注意类型处理的问题。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00