Apache Kyuubi 中 Spark History Server 显示不完整应用的问题分析
问题背景
在 Apache Kyuubi 项目中,当用户尝试通过 Spark History Server 查看不完整的应用程序时,会遇到一个类型转换异常。具体表现为访问 Kyuubi Query Engine UI 时出现 HTTP 500 错误,错误信息显示无法将 Integer 类型转换为 Long 类型。
错误现象
用户在访问 Spark History Server 时,系统抛出以下异常:
java.lang.ClassCastException: java.lang.Integer cannot be cast to java.lang.Long
这个错误发生在 org.apache.spark.ui.StatementStatsPagedTable.row 方法中,具体是在处理引擎页面数据时出现的类型转换问题。
问题根源
经过深入分析,这个问题与 Jackson 库在 Scala 中的类型处理有关。当 Spark History Server 尝试从持久化的数据中读取操作运行时间(operationRunTime)和操作CPU时间(operationCpuTime)时,Jackson 默认将这些数值反序列化为 Integer 类型,而代码中期望的是 Long 类型,导致了类型转换异常。
解决方案
针对这个问题,社区提出了两种解决方案:
-
直接类型转换方案:在代码中显式地将 Integer 转换为 Long,这种方法虽然有效,但不是最优雅的解决方案。
-
Jackson 注解方案:使用
@JsonDeserialize注解明确指定反序列化目标类型为 Long,这是更符合设计原则的解决方案。
最终采用了第二种方案,通过在相关字段上添加 @JsonDeserialize(contentAs = classOf[java.lang.Long]) 注解,明确告诉 Jackson 反序列化器应该将数值转换为 Long 类型,从而避免了类型转换异常。
技术细节
这个问题实际上反映了 Scala 和 Java 类型系统在 Jackson 序列化/反序列化过程中的一些微妙差异。在 Scala 中,数值类型的处理有时会与 Java 产生不一致,特别是在泛型和类型擦除的上下文中。
@JsonDeserialize 注解是 Jackson 提供的一个强大工具,它允许开发者精确控制反序列化过程。在这个案例中,我们用它来确保数值字段总是被反序列化为 Long 类型,无论原始数据是以什么格式存储的。
影响范围
该问题主要影响以下场景:
- 使用 Spark 3.3.2 版本的集群
- 通过 Spark History Server 查看不完整的应用程序
- 访问 Kyuubi Query Engine UI 时
修复效果
修复后,用户可以正常通过 Spark History Server 查看所有应用程序,包括不完整的应用,且 Kyuubi Query Engine UI 能够正确显示,不再出现类型转换错误。
总结
这个问题展示了在复杂的数据处理系统中,类型系统的一致性是多么重要。通过使用 Jackson 提供的类型提示功能,我们能够确保数据在不同组件间传递时保持类型一致性,从而避免运行时异常。这也提醒开发者在设计跨语言、跨系统的数据接口时,需要特别注意类型处理的问题。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00