Mozc项目迁移至Bazel 8.0的技术实践
背景介绍
Mozc作为Google开发的日语输入法引擎,其构建系统基于Bazel。随着Bazel 8.0即将发布,项目团队开始着手准备从Bazel 7.4.x到8.0.x的迁移工作。本文将详细介绍这一技术迁移过程中的关键点和实践经验。
迁移准备工作
在正式迁移前,团队制定了详细的工作计划:
-
版本锁定策略:在迁移初期,先将Bazel版本锁定在7.4.x,确保现有构建系统的稳定性。对于使用Bazelisk的GitHub Actions工作流,通过设置USE_BAZEL_VERSION环境变量来指定版本。
-
依赖模块兼容性检查:全面检查所有依赖的Bazel模块是否兼容Bazel 8.0,必要时更新模块版本。
-
自定义构建规则适配:确保Mozc项目自身的构建规则能够适配Bazel 8.0的新特性。
关键迁移步骤
1. 构建系统升级
团队首先更新了构建系统的核心组件,包括rules_apple等关键模块。在测试过程中发现,rules_apple 3.16.1版本能够很好地支持Linux平台下的服务器、GUI工具以及fcitx5输入法框架的构建。
2. 代码变更适配
迁移过程中需要对代码进行多处调整,包括但不限于:
- 构建文件(.bzl)的语法更新
- 依赖声明方式的调整
- 测试框架的适配
3. 持续集成系统改造
团队对GitHub Actions工作流进行了改造,确保CI/CD管道能够同时支持新旧版本的Bazel,为平滑过渡创造条件。
技术挑战与解决方案
在迁移过程中,团队遇到了几个主要挑战:
-
向后兼容性问题:通过创建临时分支进行测试,确保所有功能在Bazel 8.0下正常工作后才合并到主分支。
-
依赖冲突:仔细分析依赖树,逐步更新各模块版本,避免引入不兼容的变更。
-
构建性能优化:利用Bazel 8.0的新特性对构建过程进行优化,减少构建时间。
迁移后的验证
完成迁移后,团队进行了全面的验证:
- 各平台构建测试(Windows/Linux/macOS)
- 功能完整性测试
- 性能基准测试
- 稳定性测试
经验总结
通过这次迁移,团队积累了宝贵的经验:
- 渐进式迁移:采用锁定旧版本、逐步验证的方式大大降低了风险。
- 自动化测试:完善的CI系统是确保迁移成功的关键。
- 社区协作:积极与Bazel社区沟通,及时获取最新信息和支持。
未来展望
随着Bazel 8.0的正式发布,Mozc项目将完全转向新版本,并计划逐步淘汰对Bazel 7.x的支持。团队将持续关注Bazel生态的发展,及时采用新特性来优化输入法引擎的构建过程。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









