Modelscope/swift项目中回归任务的损失计算方式解析
2025-05-31 12:29:44作者:凤尚柏Louis
在机器学习领域,回归任务是预测连续数值输出的重要问题类型。Modelscope/swift作为一个功能强大的机器学习框架,在处理回归任务时采用了均方误差(Mean Squared Error,MSE)作为其默认的损失函数。
均方误差损失函数原理
均方误差是回归问题中最常用的损失函数之一,其数学表达式为:
MSE = 1/n * Σ(y_true - y_pred)^2
其中:
n表示样本数量y_true表示真实值y_pred表示模型预测值
MSE的特点与优势
- 凸函数性质:MSE是凸函数,保证了优化过程中能够找到全局最优解
- 放大大误差:平方操作使得较大的误差会被显著放大,促使模型优先修正这些明显偏差
- 可微分性:处处可微的特性使其非常适合梯度下降等优化算法
- 与高斯分布的联系:MSE最小化等价于假设误差服从高斯分布时的最大似然估计
实际应用中的考量
在实际使用Modelscope/swift进行回归任务时,开发者需要注意:
- 异常值敏感:由于平方操作,MSE对异常值非常敏感,在数据存在离群点时可能需要考虑其他鲁棒性更强的损失函数
- 量纲影响:MSE的单位是目标变量的平方,解释性不如绝对误差直观
- 尺度问题:不同特征尺度可能影响优化效果,通常需要先进行特征标准化
其他常见回归损失函数对比
虽然MSE是默认选择,但在特定场景下可能需要考虑其他损失函数:
- 平均绝对误差(MAE):对异常值更鲁棒
- Huber损失:结合了MSE和MAE的优点
- 分位数损失:适用于需要预测区间的情况
Modelscope/swift框架选择MSE作为默认回归损失函数,体现了其在大多数回归场景下的普适性和有效性,开发者可以根据具体任务需求选择合适的损失函数配置。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210