MJRefresh中列表滚动状态检测的优化方案
背景介绍
在iOS开发中,UITableView和UICollectionView是展示列表数据的核心组件。开发者经常需要根据列表的滚动状态来控制某些业务逻辑,比如在列表滚动时暂停数据更新以避免性能问题。MJRefresh作为iOS开发中最流行的下拉刷新组件之一,为开发者提供了便捷的刷新功能。
问题描述
在实际开发中,我们可能会遇到这样的需求:当列表正在滚动时,暂停数据更新;当滚动停止时,再恢复数据更新。常见的实现方式是监听UIScrollView的代理方法,通过设置一个isScrolling标志位来记录滚动状态。
然而,在使用MJRefresh时,开发者可能会发现一个特殊现象:当下拉刷新结束后,scrollViewDidScroll方法会被最后调用,导致获取的isScrolling状态为YES,而此时实际上列表已经停止了滚动。这种状态不一致会导致业务逻辑判断出错。
原因分析
这种现象的根本原因在于MJRefresh在下拉刷新结束时的内部实现机制。当刷新操作完成时,MJRefresh会通过动画将列表恢复到原始位置,这个恢复过程会触发scrollViewDidScroll回调。而此时用户的手指已经离开了屏幕,实际上滚动是由系统动画驱动的,而非用户主动触发的滚动。
解决方案
方案一:精确控制状态变更时机
我们可以通过更精确地控制滚动状态的变更时机来解决这个问题:
- (void)scrollViewWillBeginDragging:(UIScrollView *)scrollView {
// 用户开始拖动时设置为滚动状态
self.isScrolling = YES;
}
- (void)scrollViewDidEndDecelerating:(UIScrollView *)scrollView {
// 滚动自然停止时设置为非滚动状态
self.isScrolling = NO;
}
这种方法只关注用户主动触发的滚动行为,忽略系统动画产生的滚动事件,从而避免了状态不一致的问题。
方案二:结合目标位置判断
更精确的方案是使用scrollViewWillEndDragging方法,结合目标位置来判断滚动状态:
- (void)scrollViewWillEndDragging:(UIScrollView *)scrollView
withVelocity:(CGPoint)velocity
targetContentOffset:(inout CGPoint *)targetContentOffset {
// 根据目标位置和当前偏移量判断是否真正停止
if (velocity.y == 0 && scrollView.contentOffset.y == targetContentOffset->y) {
self.isScrolling = NO;
}
}
这种方法可以更准确地判断列表是否真正停止了滚动,适用于更复杂的滚动场景。
最佳实践
在实际项目中,建议结合多种滚动代理方法来精确控制滚动状态:
- 在scrollViewWillBeginDragging中标记开始滚动
- 在scrollViewDidEndDragging中判断是否需要等待减速
- 在scrollViewDidEndDecelerating中标记滚动完全停止
- 对于程序触发的滚动,在scrollViewDidEndScrollingAnimation中处理
- (void)scrollViewWillBeginDragging:(UIScrollView *)scrollView {
self.isScrolling = YES;
}
- (void)scrollViewDidEndDragging:(UIScrollView *)scrollView willDecelerate:(BOOL)decelerate {
if (!decelerate) {
self.isScrolling = NO;
}
}
- (void)scrollViewDidEndDecelerating:(UIScrollView *)scrollView {
self.isScrolling = NO;
}
- (void)scrollViewDidEndScrollingAnimation:(UIScrollView *)scrollView {
self.isScrolling = NO;
}
总结
在MJRefresh等第三方库的使用场景下,正确处理列表滚动状态需要考虑更多边界情况。通过精确控制状态变更时机,结合多种滚动代理方法的协同工作,可以确保滚动状态检测的准确性。这种方案不仅解决了MJRefresh下拉刷新后的状态不一致问题,也为其他类似的滚动场景提供了可靠的解决方案。
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息010GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0274get_jobs
💼【AI找工作助手】全平台自动投简历脚本:(boss、前程无忧、猎聘、拉勾、智联招聘)Java01Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









