MJRefresh中列表滚动状态检测的优化方案
背景介绍
在iOS开发中,UITableView和UICollectionView是展示列表数据的核心组件。开发者经常需要根据列表的滚动状态来控制某些业务逻辑,比如在列表滚动时暂停数据更新以避免性能问题。MJRefresh作为iOS开发中最流行的下拉刷新组件之一,为开发者提供了便捷的刷新功能。
问题描述
在实际开发中,我们可能会遇到这样的需求:当列表正在滚动时,暂停数据更新;当滚动停止时,再恢复数据更新。常见的实现方式是监听UIScrollView的代理方法,通过设置一个isScrolling标志位来记录滚动状态。
然而,在使用MJRefresh时,开发者可能会发现一个特殊现象:当下拉刷新结束后,scrollViewDidScroll方法会被最后调用,导致获取的isScrolling状态为YES,而此时实际上列表已经停止了滚动。这种状态不一致会导致业务逻辑判断出错。
原因分析
这种现象的根本原因在于MJRefresh在下拉刷新结束时的内部实现机制。当刷新操作完成时,MJRefresh会通过动画将列表恢复到原始位置,这个恢复过程会触发scrollViewDidScroll回调。而此时用户的手指已经离开了屏幕,实际上滚动是由系统动画驱动的,而非用户主动触发的滚动。
解决方案
方案一:精确控制状态变更时机
我们可以通过更精确地控制滚动状态的变更时机来解决这个问题:
- (void)scrollViewWillBeginDragging:(UIScrollView *)scrollView {
// 用户开始拖动时设置为滚动状态
self.isScrolling = YES;
}
- (void)scrollViewDidEndDecelerating:(UIScrollView *)scrollView {
// 滚动自然停止时设置为非滚动状态
self.isScrolling = NO;
}
这种方法只关注用户主动触发的滚动行为,忽略系统动画产生的滚动事件,从而避免了状态不一致的问题。
方案二:结合目标位置判断
更精确的方案是使用scrollViewWillEndDragging方法,结合目标位置来判断滚动状态:
- (void)scrollViewWillEndDragging:(UIScrollView *)scrollView
withVelocity:(CGPoint)velocity
targetContentOffset:(inout CGPoint *)targetContentOffset {
// 根据目标位置和当前偏移量判断是否真正停止
if (velocity.y == 0 && scrollView.contentOffset.y == targetContentOffset->y) {
self.isScrolling = NO;
}
}
这种方法可以更准确地判断列表是否真正停止了滚动,适用于更复杂的滚动场景。
最佳实践
在实际项目中,建议结合多种滚动代理方法来精确控制滚动状态:
- 在scrollViewWillBeginDragging中标记开始滚动
- 在scrollViewDidEndDragging中判断是否需要等待减速
- 在scrollViewDidEndDecelerating中标记滚动完全停止
- 对于程序触发的滚动,在scrollViewDidEndScrollingAnimation中处理
- (void)scrollViewWillBeginDragging:(UIScrollView *)scrollView {
self.isScrolling = YES;
}
- (void)scrollViewDidEndDragging:(UIScrollView *)scrollView willDecelerate:(BOOL)decelerate {
if (!decelerate) {
self.isScrolling = NO;
}
}
- (void)scrollViewDidEndDecelerating:(UIScrollView *)scrollView {
self.isScrolling = NO;
}
- (void)scrollViewDidEndScrollingAnimation:(UIScrollView *)scrollView {
self.isScrolling = NO;
}
总结
在MJRefresh等第三方库的使用场景下,正确处理列表滚动状态需要考虑更多边界情况。通过精确控制状态变更时机,结合多种滚动代理方法的协同工作,可以确保滚动状态检测的准确性。这种方案不仅解决了MJRefresh下拉刷新后的状态不一致问题,也为其他类似的滚动场景提供了可靠的解决方案。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00