AutoSurveyGPT:基于GPT的自动化文献调研工具
2024-09-12 17:51:40作者:温玫谨Lighthearted
项目介绍
AutoSurveyGPT是一款开源程序,旨在通过解析Google Scholar并利用GPT-3.5 Turbo(默认)或GPT-4来自动进行文献调查和综述。该工具面向研究者和学术界人士,能够根据用户提供的主题描述搜索相关工作,并生成一个报告,列出相关论文及其相关性分数。它不仅自动生成搜索关键词,还能分析Google Scholar的搜索结果,提取论文的关键信息,如标题、作者、出版地及摘要,并且能够根据用户的需求分析这些论文的关联度,实现递归查找引文和相关论文。
项目快速启动
环境准备
确保你的开发环境满足以下条件:
- Python 3.7或更高版本
- 安装
selenium,beautifulsoup4, 和openai库 - 拥有一个有效的OpenAI API密钥
- 配备ChromeDriver以支持Selenium的网页自动化操作
执行安装步骤:
git clone https://github.com/a554b554/AutoSurveyGPT.git
cd AutoSurveyGPT
pip install -r requirements.txt
配置您的OpenAI API密钥,在config.py文件中添加:
openai_api_key = "your_openai_api_key"
运行示例
创建一个JSON输入文件,例如input.json:
{
"search_query": "",
"my_topic": "深度学习在图像识别中的应用",
"search_breadth": 10,
"search_depth_cited": 2,
"search_depth_related": 2,
"relevance_threshold": 3,
"max_papers": 50,
"output_file": "output/report.ndjson"
}
运行主脚本:
python main.py -i input.json
此命令将根据您提供的信息执行文献调查并生成报告。
应用案例和最佳实践
- 研究起始: 初步研究一个新领域时,可以通过AutoSurveyGPT快速获得该领域的核心论文列表。
- 对比分析: 对比不同方法论的论文集合,帮助选择适合的研究方向。
- 定期更新: 设定周期性的任务,监控特定主题的新论文出现,保持研究的时效性。
典型生态项目
由于本项目主要依赖于OpenAI和Google Scholar,其“生态”涉及但不限于AI辅助研究工具、学术搜索引擎优化技术、以及Python自动化科学文献处理社区。虽然这个特定的开源项目没有直接提及其他典型的生态项目,但相似或配套的工具可能包括:
- PaperWithCode:连接论文到其对应实现代码的平台,增强文献的实际应用价值。
- Scholarcy:自动化摘要和关键词提取工具,可与AutoSurveyGPT结合使用,进一步提升文献处理效率。
- Colab notebooks:用于分享和执行基于Python的代码示例,适用于分析从AutoSurveyGPT得到的数据。
请注意,以上生态项目例子并非直接与AutoSurveyGPT关联,而是展示了它可以融入的更广泛的科研生态中。开发者可以根据自己的需求,探索如何将AutoSurveyGPT与其他工具集成,构建更为高效的科研流程。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217