.NET Extensions中DiskBasedResponseCache的CacheOptions移除分析
在.NET Extensions项目中,最近对AI评估模块中的响应缓存机制进行了重要重构,特别是移除了DiskBasedResponseCacheProvider中的CacheOptions配置功能。这一变更旨在简化缓存实现,统一不同缓存提供者的接口设计,同时为高级场景提供更灵活的扩展方式。
原有设计的问题
在之前的实现中,DiskBasedResponseCacheProvider通过一个选项文件支持两种特殊功能:
- 调整缓存条目的默认生存时间(TTL)
- 设置缓存模式,包括完全禁用缓存或在缓存未命中时阻止调用LLM
而同一项目中的AzureStorageResponseCacheProvider则采用了不同的设计,仅支持通过代码构造函数参数来调整TTL,没有提供缓存模式功能。
这种不一致的设计带来了几个问题:
- 两个缓存提供者的API设计不统一,增加了使用复杂度
- 缓存模式功能属于特殊场景需求,不应作为核心功能提供
- 选项文件的配置方式增加了不必要的复杂性
重构后的设计
重构后的设计做出了以下改进:
-
移除了选项文件支持:不再通过外部文件配置缓存行为,简化了部署和配置管理
-
统一了构造函数设计:现在
DiskBasedResponseCacheProvider和AzureStorageResponseCacheProvider都支持通过构造函数参数来设置默认TTL,保持了API一致性 -
移除了特殊缓存模式:将"完全禁用缓存"和"缓存未命中时阻止LLM调用"这类特殊功能从核心实现中移除
高级场景支持
对于需要特殊缓存行为的场景,项目建议开发者通过实现自定义的IResponseCacheProvider接口来满足需求。这种方式提供了更大的灵活性:
- 可以完全控制缓存命中/未命中时的行为
- 能够实现各种自定义的缓存策略
- 不影响核心库的简洁性和维护性
技术实现细节
在实现层面,重构涉及以下关键变更:
- 移除了
CacheOptions类及相关配置文件处理逻辑 - 简化了
DiskBasedResponseCacheProvider的构造函数,使其与Azure版本保持一致 - 确保所有缓存提供者都支持通过代码配置基本参数,如TTL值
这种设计更符合.NET Extensions项目的设计哲学,即提供简洁、一致的基础设施组件,同时为高级场景保留足够的扩展点。
总结
这次重构使得.NET Extensions中的响应缓存系统更加简洁和一致,降低了普通用户的使用门槛,同时通过自定义实现的方式保留了应对特殊需求的能力。这种平衡是框架设计中常见的取舍,既保证了核心功能的简单可靠,又为复杂场景提供了解决方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01