.NET Extensions中DiskBasedResponseCache的CacheOptions移除分析
在.NET Extensions项目中,最近对AI评估模块中的响应缓存机制进行了重要重构,特别是移除了DiskBasedResponseCacheProvider中的CacheOptions配置功能。这一变更旨在简化缓存实现,统一不同缓存提供者的接口设计,同时为高级场景提供更灵活的扩展方式。
原有设计的问题
在之前的实现中,DiskBasedResponseCacheProvider通过一个选项文件支持两种特殊功能:
- 调整缓存条目的默认生存时间(TTL)
- 设置缓存模式,包括完全禁用缓存或在缓存未命中时阻止调用LLM
而同一项目中的AzureStorageResponseCacheProvider则采用了不同的设计,仅支持通过代码构造函数参数来调整TTL,没有提供缓存模式功能。
这种不一致的设计带来了几个问题:
- 两个缓存提供者的API设计不统一,增加了使用复杂度
- 缓存模式功能属于特殊场景需求,不应作为核心功能提供
- 选项文件的配置方式增加了不必要的复杂性
重构后的设计
重构后的设计做出了以下改进:
-
移除了选项文件支持:不再通过外部文件配置缓存行为,简化了部署和配置管理
-
统一了构造函数设计:现在
DiskBasedResponseCacheProvider和AzureStorageResponseCacheProvider都支持通过构造函数参数来设置默认TTL,保持了API一致性 -
移除了特殊缓存模式:将"完全禁用缓存"和"缓存未命中时阻止LLM调用"这类特殊功能从核心实现中移除
高级场景支持
对于需要特殊缓存行为的场景,项目建议开发者通过实现自定义的IResponseCacheProvider接口来满足需求。这种方式提供了更大的灵活性:
- 可以完全控制缓存命中/未命中时的行为
- 能够实现各种自定义的缓存策略
- 不影响核心库的简洁性和维护性
技术实现细节
在实现层面,重构涉及以下关键变更:
- 移除了
CacheOptions类及相关配置文件处理逻辑 - 简化了
DiskBasedResponseCacheProvider的构造函数,使其与Azure版本保持一致 - 确保所有缓存提供者都支持通过代码配置基本参数,如TTL值
这种设计更符合.NET Extensions项目的设计哲学,即提供简洁、一致的基础设施组件,同时为高级场景保留足够的扩展点。
总结
这次重构使得.NET Extensions中的响应缓存系统更加简洁和一致,降低了普通用户的使用门槛,同时通过自定义实现的方式保留了应对特殊需求的能力。这种平衡是框架设计中常见的取舍,既保证了核心功能的简单可靠,又为复杂场景提供了解决方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00